ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03152
  4. Cited By
Bounding Wasserstein distance with couplings

Bounding Wasserstein distance with couplings

6 December 2021
N. Biswas
Lester W. Mackey
ArXivPDFHTML

Papers citing "Bounding Wasserstein distance with couplings"

49 / 49 papers shown
Title
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
102
2
0
20 Mar 2024
A fast asynchronous MCMC sampler for sparse Bayesian inference
A fast asynchronous MCMC sampler for sparse Bayesian inference
Yves F. Atchadé
Liwei Wang
41
3
0
14 Aug 2021
Discrete sticky couplings of functional autoregressive processes
Discrete sticky couplings of functional autoregressive processes
Alain Durmus
A. Eberle
Aurélien Enfroy
Arnaud Guillin
Pierre Monmarché
29
7
0
14 Apr 2021
Optimal transport couplings of Gibbs samplers on partitions for unbiased
  estimation
Optimal transport couplings of Gibbs samplers on partitions for unbiased estimation
Brian L. Trippe
Tin D. Nguyen
Tamara Broderick
OT
13
3
0
09 Apr 2021
Coupling-based convergence assessment of some Gibbs samplers for
  high-dimensional Bayesian regression with shrinkage priors
Coupling-based convergence assessment of some Gibbs samplers for high-dimensional Bayesian regression with shrinkage priors
N. Biswas
A. Bhattacharya
Pierre E. Jacob
J. Johndrow
47
14
0
09 Dec 2020
Maximal couplings of the Metropolis-Hastings algorithm
Maximal couplings of the Metropolis-Hastings algorithm
J. O'Leary
Guanyang Wang
Pierre E. Jacob
44
21
0
16 Oct 2020
Stochastic Stein Discrepancies
Stochastic Stein Discrepancies
Jackson Gorham
Anant Raj
Lester W. Mackey
47
37
0
06 Jul 2020
Validated Variational Inference via Practical Posterior Error Bounds
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan H. Huggins
Mikolaj Kasprzak
Trevor Campbell
Tamara Broderick
52
37
0
09 Oct 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
57
137
0
16 Jul 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
46
48
0
23 May 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
37
926
0
19 Mar 2019
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Unbiased Smoothing using Particle Independent Metropolis-Hastings
Lawrence Middleton
George Deligiannidis
Arnaud Doucet
Pierre E. Jacob
39
21
0
05 Feb 2019
Revisiting the Gelman-Rubin Diagnostic
Revisiting the Gelman-Rubin Diagnostic
Dootika Vats
Christina Knudson
54
136
0
21 Dec 2018
Unbiased Markov chain Monte Carlo for intractable target distributions
Unbiased Markov chain Monte Carlo for intractable target distributions
Lawrence Middleton
George Deligiannidis
Arnaud Doucet
Pierre E. Jacob
28
33
0
23 Jul 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
49
15
0
26 Jun 2018
Random Feature Stein Discrepancies
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
67
45
0
20 Jun 2018
Coupled conditional backward sampling particle filter
Coupled conditional backward sampling particle filter
Anthony Lee
Sumeetpal S. Singh
M. Vihola
61
32
0
15 Jun 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
94
138
0
01 May 2018
Convergence and Concentration of Empirical Measures under Wasserstein
  Distance in Unbounded Functional Spaces
Convergence and Concentration of Empirical Measures under Wasserstein Distance in Unbounded Functional Spaces
Jing Lei
43
120
0
27 Apr 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
195
2,143
0
01 Mar 2018
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Trevor Campbell
Tamara Broderick
59
137
0
05 Feb 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
66
254
0
08 Jan 2018
Unbiased Hamiltonian Monte Carlo with couplings
Unbiased Hamiltonian Monte Carlo with couplings
J. Heng
Pierre E. Jacob
54
63
0
01 Sep 2017
Sharp asymptotic and finite-sample rates of convergence of empirical
  measures in Wasserstein distance
Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance
Jonathan Niles-Weed
Francis R. Bach
175
421
0
01 Jul 2017
Near-linear time approximation algorithms for optimal transport via
  Sinkhorn iteration
Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
Jason M. Altschuler
Jonathan Niles-Weed
Philippe Rigollet
OT
66
590
0
26 May 2017
Central Limit Theorem for empirical transportation cost in general
  dimension
Central Limit Theorem for empirical transportation cost in general dimension
E. del Barrio
Jean-Michel Loubes
OT
40
107
0
03 May 2017
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
116
223
0
06 Mar 2017
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
68
116
0
21 Nov 2016
Coresets for Scalable Bayesian Logistic Regression
Coresets for Scalable Bayesian Logistic Regression
Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
52
218
0
20 May 2016
High-dimensional Bayesian inference via the Unadjusted Langevin
  Algorithm
High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
74
33
0
05 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
98
483
0
10 Feb 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
181
328
0
09 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
242
4,778
0
04 Jan 2016
Importance Sampling: Intrinsic Dimension and Computational Cost
Importance Sampling: Intrinsic Dimension and Computational Cost
S. Agapiou
O. Papaspiliopoulos
D. Sanz-Alonso
Andrew M. Stuart
61
161
0
19 Nov 2015
The sample size required in importance sampling
The sample size required in importance sampling
S. Chatterjee
P. Diaconis
88
191
0
04 Nov 2015
Leave Pima Indians alone: binary regression as a benchmark for Bayesian
  computation
Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation
Nicolas Chopin
James Ridgway
65
76
0
29 Jun 2015
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression
Fast sampling with Gaussian scale-mixture priors in high-dimensional regression
A. Bhattacharya
Antik Chakraborty
Bani Mallick
60
179
0
15 Jun 2015
Measuring Sample Quality with Stein's Method
Measuring Sample Quality with Stein's Method
Jackson Gorham
Lester W. Mackey
96
225
0
09 Jun 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
279
0
11 May 2015
Perturbation theory for Markov chains via Wasserstein distance
Perturbation theory for Markov chains via Wasserstein distance
Daniel Rudolf
Nikolaus Schweizer
67
108
0
13 Mar 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
Bayesian variable selection with shrinking and diffusing priors
Bayesian variable selection with shrinking and diffusing priors
N. Narisetty
Xuming He
BDL
83
212
0
26 May 2014
Ergodicity of Approximate MCMC Chains with Applications to Large Data
  Sets
Ergodicity of Approximate MCMC Chains with Applications to Large Data Sets
Natesh S. Pillai
Aaron Smith
64
59
0
01 May 2014
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
190
4,251
0
04 Jun 2013
Error bounds for Metropolis-Hastings algorithms applied to perturbations
  of Gaussian measures in high dimensions
Error bounds for Metropolis-Hastings algorithms applied to perturbations of Gaussian measures in high dimensions
A. Eberle
91
41
0
03 Oct 2012
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
242
2,619
0
29 Jun 2012
Rényi Divergence and Kullback-Leibler Divergence
Rényi Divergence and Kullback-Leibler Divergence
T. Erven
P. Harremoes
79
1,334
0
12 Jun 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,276
0
09 Jun 2012
Non-asymptotic mixing of the MALA algorithm
Non-asymptotic mixing of the MALA algorithm
Nawaf Bou-Rabee
Martin Hairer
Eric Vanden-Eijnden
68
94
0
20 Aug 2010
1