ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00945
  4. Cited By
DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework

DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework

2 December 2021
Chao Zhang
Zhijian Li
Hui Qian
Xin Du
ArXiv (abs)PDFHTML

Papers citing "DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework"

22 / 22 papers shown
Title
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Wasserstein Gradient Flow over Variational Parameter Space for Variational Inference
Dai Hai Nguyen
Tetsuya Sakurai
Hiroshi Mamitsuka
125
2
0
25 Oct 2023
Kernel Stein Discrepancy Descent
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
66
52
0
20 May 2021
Unbalanced Sobolev Descent
Unbalanced Sobolev Descent
Youssef Mroueh
Mattia Rigotti
38
17
0
29 Sep 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
70
78
0
17 Jun 2020
Accelerated Information Gradient flow
Accelerated Information Gradient flow
Yifei Wang
Wuchen Li
84
57
0
04 Sep 2019
Accelerating Langevin Sampling with Birth-death
Accelerating Langevin Sampling with Birth-death
Yulong Lu
Jianfeng Lu
J. Nolen
95
55
0
23 May 2019
Global convergence of neuron birth-death dynamics
Global convergence of neuron birth-death dynamics
Grant M. Rotskoff
Samy Jelassi
Joan Bruna
Eric Vanden-Eijnden
51
46
0
05 Feb 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
92
22
0
01 Feb 2019
Variance Reduction in Stochastic Particle-Optimization Sampling
Variance Reduction in Stochastic Particle-Optimization Sampling
Jianyi Zhang
Yang Zhao
Changyou Chen
OT
58
13
0
20 Nov 2018
Stein Variational Gradient Descent as Moment Matching
Stein Variational Gradient Descent as Moment Matching
Qiang Liu
Dilin Wang
94
38
0
27 Oct 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
97
46
0
05 Sep 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
64
89
0
29 May 2018
Stein Points
Stein Points
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
86
102
0
27 Mar 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
113
183
0
22 Feb 2018
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Riemannian Stein Variational Gradient Descent for Bayesian Inference
Chang-rui Liu
Jun Zhu
59
67
0
30 Nov 2017
Particle Optimization in Stochastic Gradient MCMC
Particle Optimization in Stochastic Gradient MCMC
Changyou Chen
Ruiyi Zhang
46
10
0
29 Nov 2017
Message Passing Stein Variational Gradient Descent
Message Passing Stein Variational Gradient Descent
Jingwei Zhuo
Chang-rui Liu
Jiaxin Shi
Jun Zhu
Ning Chen
Bo Zhang
65
92
0
13 Nov 2017
Stein Variational Gradient Descent as Gradient Flow
Stein Variational Gradient Descent as Gradient Flow
Qiang Liu
OT
108
277
0
25 Apr 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
90
1,094
0
16 Aug 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
113
486
0
10 Feb 2016
A Complete Recipe for Stochastic Gradient MCMC
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDLSyDa
80
490
0
15 Jun 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
150
1,167
0
31 Dec 2013
1