ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.15340
  4. Cited By
MC-SSL0.0: Towards Multi-Concept Self-Supervised Learning

MC-SSL0.0: Towards Multi-Concept Self-Supervised Learning

30 November 2021
Sara Atito
Muhammad Awais
Ammarah Farooq
Zhenhua Feng
J. Kittler
ArXiv (abs)PDFHTML

Papers citing "MC-SSL0.0: Towards Multi-Concept Self-Supervised Learning"

48 / 48 papers shown
Title
iBOT: Image BERT Pre-Training with Online Tokenizer
iBOT: Image BERT Pre-Training with Online Tokenizer
Jinghao Zhou
Chen Wei
Huiyu Wang
Wei Shen
Cihang Xie
Alan Yuille
Tao Kong
81
735
0
15 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViTTPM
462
7,757
0
11 Nov 2021
Query2Label: A Simple Transformer Way to Multi-Label Classification
Query2Label: A Simple Transformer Way to Multi-Label Classification
Shilong Liu
Lei Zhang
Xiao Yang
Hang Su
Jun Zhu
62
192
0
22 Jul 2021
BEiT: BERT Pre-Training of Image Transformers
BEiT: BERT Pre-Training of Image Transformers
Hangbo Bao
Li Dong
Songhao Piao
Furu Wei
ViT
274
2,826
0
15 Jun 2021
MlTr: Multi-label Classification with Transformer
MlTr: Multi-label Classification with Transformer
Xingyi Cheng
Hezheng Lin
Xiangyu Wu
Fan Yang
Dong Shen
Zhongyuan Wang
Nian Shi
Honglin Liu
ViT
51
49
0
11 Jun 2021
VICReg: Variance-Invariance-Covariance Regularization for
  Self-Supervised Learning
VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning
Adrien Bardes
Jean Ponce
Yann LeCun
SSLDML
153
933
0
11 May 2021
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
688
6,079
0
29 Apr 2021
SiT: Self-supervised vIsion Transformer
SiT: Self-supervised vIsion Transformer
Sara Atito Ali Ahmed
Muhammad Awais
J. Kittler
ViT
73
139
0
08 Apr 2021
An Empirical Study of Training Self-Supervised Vision Transformers
An Empirical Study of Training Self-Supervised Vision Transformers
Xinlei Chen
Saining Xie
Kaiming He
ViT
154
1,864
0
05 Apr 2021
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
Jure Zbontar
Li Jing
Ishan Misra
Yann LeCun
Stéphane Deny
SSL
307
2,347
0
04 Mar 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
415
4,953
0
24 Feb 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
387
6,768
0
23 Dec 2020
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers
Jack Lanchantin
Tianlu Wang
Vicente Ordonez
Yanjun Qi
ViT
60
266
0
27 Nov 2020
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
253
4,054
0
20 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
657
41,103
0
22 Oct 2020
Asymmetric Loss For Multi-Label Classification
Asymmetric Loss For Multi-Label Classification
Emanuel Ben-Baruch
T. Ridnik
Nadav Zamir
Asaf Noy
Itamar Friedman
M. Protter
Lihi Zelnik-Manor
86
540
0
29 Sep 2020
Knowledge-Guided Multi-Label Few-Shot Learning for General Image
  Recognition
Knowledge-Guided Multi-Label Few-Shot Learning for General Image Recognition
Tianshui Chen
Liang Lin
Riquan Chen
X. Hui
Hefeng Wu
84
155
0
20 Sep 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
233
4,083
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
371
6,806
0
13 Jun 2020
Self-Supervised Relational Reasoning for Representation Learning
Self-Supervised Relational Reasoning for Representation Learning
Massimiliano Patacchiola
Amos Storkey
OODSSL
53
63
0
10 Jun 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
369
18,778
0
13 Feb 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
201
12,085
0
13 Nov 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
234
3,490
0
30 Sep 2019
Learning Semantic-Specific Graph Representation for Multi-Label Image
  Recognition
Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition
Tianshui Chen
Muxi Xu
X. Hui
Hefeng Wu
Liang Lin
78
289
0
20 Aug 2019
Large Scale Adversarial Representation Learning
Large Scale Adversarial Representation Learning
Jeff Donahue
Karen Simonyan
SSL
130
543
0
04 Jul 2019
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSLDRL
320
2,662
0
20 Aug 2018
Deep Clustering for Unsupervised Learning of Visual Features
Deep Clustering for Unsupervised Learning of Visual Features
Mathilde Caron
Piotr Bojanowski
Armand Joulin
Matthijs Douze
SSL
88
1,898
0
15 Jul 2018
Self-Supervised Feature Learning by Learning to Spot Artifacts
Self-Supervised Feature Learning by Learning to Spot Artifacts
Simon Jenni
Paolo Favaro
SSL
190
127
0
13 Jun 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
131
1,772
0
24 May 2018
Unsupervised Representation Learning by Predicting Image Rotations
Unsupervised Representation Learning by Predicting Image Rotations
Spyros Gidaris
Praveer Singh
N. Komodakis
OODSSLDRL
258
3,290
0
21 Mar 2018
Learning Image Representations by Completing Damaged Jigsaw Puzzles
Learning Image Representations by Completing Damaged Jigsaw Puzzles
Dahun Kim
Donghyeon Cho
Donggeun Yoo
In So Kweon
SSL
72
150
0
06 Feb 2018
Decoupled Weight Decay Regularization
Decoupled Weight Decay Regularization
I. Loshchilov
Frank Hutter
OffRL
144
2,142
0
14 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
280
9,764
0
25 Oct 2017
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
  and Semantics
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Alex Kendall
Y. Gal
R. Cipolla
3DH
272
3,123
0
19 May 2017
Unsupervised Learning by Predicting Noise
Unsupervised Learning by Predicting Noise
Piotr Bojanowski
Armand Joulin
OODSSL
56
295
0
18 Apr 2017
Colorization as a Proxy Task for Visual Understanding
Colorization as a Proxy Task for Visual Understanding
Gustav Larsson
Michael Maire
Gregory Shakhnarovich
SSL
145
497
0
11 Mar 2017
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel
  Prediction
Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
SSLDRL
70
668
0
29 Nov 2016
SGDR: Stochastic Gradient Descent with Warm Restarts
SGDR: Stochastic Gradient Descent with Warm Restarts
I. Loshchilov
Frank Hutter
ODL
333
8,130
0
13 Aug 2016
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
172
5,011
0
27 Jun 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
74
1,314
0
02 Jun 2016
Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting
Deepak Pathak
Philipp Krahenbuhl
Jeff Donahue
Trevor Darrell
Alexei A. Efros
SSL
67
5,297
0
25 Apr 2016
Unsupervised Learning of Visual Representations by Solving Jigsaw
  Puzzles
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
M. Noroozi
Paolo Favaro
SSL
171
2,980
0
30 Mar 2016
Colorful Image Colorization
Colorful Image Colorization
Richard Y. Zhang
Phillip Isola
Alexei A. Efros
133
3,530
0
28 Mar 2016
Learning Representations for Automatic Colorization
Learning Representations for Automatic Colorization
Gustav Larsson
Michael Maire
Gregory Shakhnarovich
VLMSSL
90
1,013
0
22 Mar 2016
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense
  Image Annotations
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations
Ranjay Krishna
Yuke Zhu
Oliver Groth
Justin Johnson
Kenji Hata
...
Yannis Kalantidis
Li Li
David A. Shamma
Michael S. Bernstein
Fei-Fei Li
217
5,747
0
23 Feb 2016
Unsupervised Visual Representation Learning by Context Prediction
Unsupervised Visual Representation Learning by Context Prediction
Carl Doersch
Abhinav Gupta
Alexei A. Efros
DRLSSL
166
2,786
0
19 May 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
362
19,660
0
09 Mar 2015
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,667
0
01 May 2014
1