ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.13139
  4. Cited By
Group equivariant neural posterior estimation

Group equivariant neural posterior estimation

25 November 2021
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
    BDL
ArXivPDFHTML

Papers citing "Group equivariant neural posterior estimation"

22 / 22 papers shown
Title
Real-time gravitational-wave science with neural posterior estimation
Real-time gravitational-wave science with neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Jakob H. Macke
A. Buonanno
Bernhard Schölkopf
55
134
0
23 Jun 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based Inference
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
169
192
0
12 Jan 2021
Lightning-Fast Gravitational Wave Parameter Inference through Neural
  Amortization
Lightning-Fast Gravitational Wave Parameter Inference through Neural Amortization
Arnaud Delaunoy
Antoine Wehenkel
T. Hinderer
S. Nissanke
Christoph Weniger
A. Williamson
Gilles Louppe
11
30
0
24 Oct 2020
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
156
83
0
20 Oct 2020
Sampling using $SU(N)$ gauge equivariant flows
Sampling using SU(N)SU(N)SU(N) gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
46
127
0
12 Aug 2020
Complete parameter inference for GW150914 using deep learning
Complete parameter inference for GW150914 using deep learning
Stephen R. Green
J. Gair
BDL
54
89
0
07 Aug 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
120
1,662
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
126
42,038
0
03 Dec 2019
The frontier of simulation-based inference
The frontier of simulation-based inference
Kyle Cranmer
Johann Brehmer
Gilles Louppe
AI4CE
94
834
0
04 Nov 2019
Learning Bayesian posteriors with neural networks for gravitational-wave
  inference
Learning Bayesian posteriors with neural networks for gravitational-wave inference
A. J. Chua
M. Vallisneri
BDL
UQCV
10
78
0
12 Sep 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank Wood
51
55
0
08 Jul 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
98
761
0
10 Jun 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
141
319
0
17 May 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
45
20
0
10 Mar 2019
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
92
181
0
30 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
218
360
0
18 May 2018
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
95
397
0
20 Oct 2016
Group Equivariant Convolutional Networks
Group Equivariant Convolutional Networks
Taco S. Cohen
Max Welling
BDL
106
1,917
0
24 Feb 2016
Learning Summary Statistic for Approximate Bayesian Computation via Deep
  Neural Network
Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
BDL
81
140
0
08 Oct 2015
Spatial Transformer Networks
Spatial Transformer Networks
Max Jaderberg
Karen Simonyan
Andrew Zisserman
Koray Kavukcuoglu
249
7,361
0
05 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
234
4,143
0
21 May 2015
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based
  Statistical Models
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
Michael U. Gutmann
J. Corander
92
285
0
14 Jan 2015
1