ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.11326
  4. Cited By
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
v1v2v3 (latest)

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

22 November 2021
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
    CLL
ArXiv (abs)PDFHTML

Papers citing "DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion"

27 / 77 papers shown
Title
Riemannian Walk for Incremental Learning: Understanding Forgetting and
  Intransigence
Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence
Arslan Chaudhry
P. Dokania
Thalaiyasingam Ajanthan
Philip Torr
CLL
105
1,145
0
30 Jan 2018
Overcoming catastrophic forgetting with hard attention to the task
Overcoming catastrophic forgetting with hard attention to the task
Joan Serrà
Dídac Surís
M. Miron
Alexandros Karatzoglou
CLL
111
1,081
0
04 Jan 2018
FearNet: Brain-Inspired Model for Incremental Learning
FearNet: Brain-Inspired Model for Incremental Learning
Ronald Kemker
Christopher Kanan
CLL
115
480
0
28 Nov 2017
Memory Aware Synapses: Learning what (not) to forget
Memory Aware Synapses: Learning what (not) to forget
Rahaf Aljundi
F. Babiloni
Mohamed Elhoseiny
Marcus Rohrbach
Tinne Tuytelaars
KELMCLL
87
1,646
0
27 Nov 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
289
9,803
0
25 Oct 2017
FiLM: Visual Reasoning with a General Conditioning Layer
FiLM: Visual Reasoning with a General Conditioning Layer
Ethan Perez
Florian Strub
H. D. Vries
Vincent Dumoulin
Aaron Courville
FAttAIMatOffRLAI4CE
363
2,233
0
22 Sep 2017
Random Erasing Data Augmentation
Random Erasing Data Augmentation
Zhun Zhong
Liang Zheng
Guoliang Kang
Shaozi Li
Yi Yang
98
3,645
0
16 Aug 2017
Lifelong Learning with Dynamically Expandable Networks
Lifelong Learning with Dynamically Expandable Networks
Jaehong Yoon
Eunho Yang
Jeongtae Lee
Sung Ju Hwang
CLL
125
1,229
0
04 Aug 2017
Gradient Episodic Memory for Continual Learning
Gradient Episodic Memory for Continual Learning
David Lopez-Paz
MarcÁurelio Ranzato
VLMCLL
129
2,735
0
26 Jun 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,862
0
14 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
783
132,363
0
12 Jun 2017
Continual Learning with Deep Generative Replay
Continual Learning with Deep Generative Replay
Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim
KELMCLL
80
2,086
0
24 May 2017
Learning multiple visual domains with residual adapters
Learning multiple visual domains with residual adapters
Sylvestre-Alvise Rebuffi
Hakan Bilen
Andrea Vedaldi
OOD
176
938
0
22 May 2017
Convolutional Sequence to Sequence Learning
Convolutional Sequence to Sequence Learning
Jonas Gehring
Michael Auli
David Grangier
Denis Yarats
Yann N. Dauphin
AIMat
171
3,289
0
08 May 2017
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
Chrisantha Fernando
Dylan Banarse
Charles Blundell
Yori Zwols
David R Ha
Andrei A. Rusu
Alexander Pritzel
Daan Wierstra
75
881
0
30 Jan 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
374
7,561
0
02 Dec 2016
iCaRL: Incremental Classifier and Representation Learning
iCaRL: Incremental Classifier and Representation Learning
Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
G. Sperl
Christoph H. Lampert
CLLOOD
160
3,781
0
23 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
324
20,086
0
07 Oct 2016
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
426
10,531
0
21 Jul 2016
Learning without Forgetting
Learning without Forgetting
Zhizhong Li
Derek Hoiem
CLLOODSSL
308
4,428
0
29 Jun 2016
Progressive Neural Networks
Progressive Neural Networks
Andrei A. Rusu
Neil C. Rabinowitz
Guillaume Desjardins
Hubert Soyer
J. Kirkpatrick
Koray Kavukcuoglu
Razvan Pascanu
R. Hadsell
CLLAI4CE
79
2,464
0
15 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
Why M Heads are Better than One: Training a Diverse Ensemble of Deep
  Networks
Why M Heads are Better than One: Training a Diverse Ensemble of Deep Networks
Stefan Lee
Senthil Purushwalkam
Michael Cogswell
David J. Crandall
Dhruv Batra
FedMLUQCV
108
315
0
19 Nov 2015
VQA: Visual Question Answering
VQA: Visual Question Answering
Aishwarya Agrawal
Jiasen Lu
Stanislaw Antol
Margaret Mitchell
C. L. Zitnick
Dhruv Batra
Devi Parikh
CoGe
226
5,503
0
03 May 2015
Distilling the Knowledge in a Neural Network
Distilling the Knowledge in a Neural Network
Geoffrey E. Hinton
Oriol Vinyals
J. Dean
FedML
364
19,733
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
465
43,341
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Previous
12