ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.11326
  4. Cited By
DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion
v1v2v3 (latest)

DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion

22 November 2021
Arthur Douillard
Alexandre Ramé
Guillaume Couairon
Matthieu Cord
    CLL
ArXiv (abs)PDFHTML

Papers citing "DyTox: Transformers for Continual Learning with DYnamic TOken eXpansion"

50 / 77 papers shown
Title
KAC: Kolmogorov-Arnold Classifier for Continual Learning
KAC: Kolmogorov-Arnold Classifier for Continual Learning
Yusong Hu
Zichen Liang
Fei Yang
Qibin Hou
Xialei Liu
Ming-Ming Cheng
CLL
107
1
0
27 Mar 2025
Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification
Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification
Weixi Zheng
Aoling Huang. Jingping Yuan
Jingping Yuan
Haoyu Zhao
Zhou Zhao
Yongchao Xu
Thierry Géraud
CLL
99
0
0
08 Mar 2025
Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
RunQing Wu
Fei Ye
QiHe Liu
Guoxi Huang
Jinyu Guo
Rongyao Hu
CLL
413
0
0
15 Jan 2025
Fresh-CL: Feature Realignment through Experts on Hypersphere in Continual Learning
Fresh-CL: Feature Realignment through Experts on Hypersphere in Continual Learning
Zhongyi Zhou
Chaomin Shen
Pin Yi
Minjie Zhu
Yaxin Peng
428
0
0
04 Jan 2025
RECAST: Reparameterized, Compact weight Adaptation for Sequential Tasks
RECAST: Reparameterized, Compact weight Adaptation for Sequential Tasks
Nazia Tasnim
Bryan A. Plummer
CLLOffRL
132
0
0
25 Nov 2024
Sequential Learning in the Dense Associative Memory
Sequential Learning in the Dense Associative Memory
Hayden McAlister
Anthony Robins
Lech Szymanski
CLL
448
2
0
24 Sep 2024
Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning
Theoretical Insights into Overparameterized Models in Multi-Task and Replay-Based Continual Learning
Mohammadamin Banayeeanzade
Mahdi Soltanolkotabi
Mohammad Rostami
CLLLRM
283
4
0
29 Aug 2024
Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
Nisha Lakshmana Raichur
Lucas Heublein
Tobias Feigl
A. Rügamer
Christopher Mutschler
Felix Ott
CLLBDL
111
9
0
17 May 2024
Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning
Enhancing Consistency and Mitigating Bias: A Data Replay Approach for Incremental Learning
Chenyang Wang
Junjun Jiang
Xingyu Hu
Xianming Liu
Xiangyang Ji
85
4
0
12 Jan 2024
PILOT: A Pre-Trained Model-Based Continual Learning Toolbox
PILOT: A Pre-Trained Model-Based Continual Learning Toolbox
Hai-Long Sun
Da-Wei Zhou
Han-Jia Ye
De-Chuan Zhan
CLL
188
34
0
13 Sep 2023
Learning without Forgetting for Vision-Language Models
Learning without Forgetting for Vision-Language Models
Da-Wei Zhou
Yuanhan Zhang
Jingyi Ning
Jingyi Ning
De-Chuan Zhan
De-Chuan Zhan
Ziwei Liu
VLMCLL
123
43
0
30 May 2023
Perceiver IO: A General Architecture for Structured Inputs & Outputs
Perceiver IO: A General Architecture for Structured Inputs & Outputs
Andrew Jaegle
Sebastian Borgeaud
Jean-Baptiste Alayrac
Carl Doersch
Catalin Ionescu
...
Olivier J. Hénaff
M. Botvinick
Andrew Zisserman
Oriol Vinyals
João Carreira
MLLMVLMGNN
86
584
0
30 Jul 2021
Learned Token Pruning for Transformers
Learned Token Pruning for Transformers
Sehoon Kim
Sheng Shen
D. Thorsley
A. Gholami
Woosuk Kwon
Joseph Hassoun
Kurt Keutzer
62
157
0
02 Jul 2021
Tackling Catastrophic Forgetting and Background Shift in Continual
  Semantic Segmentation
Tackling Catastrophic Forgetting and Background Shift in Continual Semantic Segmentation
Arthur Douillard
Yifu Chen
Arnaud Dapogny
Matthieu Cord
CLL
48
21
0
29 Jun 2021
Preserving Earlier Knowledge in Continual Learning with the Help of All
  Previous Feature Extractors
Preserving Earlier Knowledge in Continual Learning with the Help of All Previous Feature Extractors
Zhuoyun Li
Changhong Zhong
Sijia Liu
Ruixuan Wang
Weishi Zheng
CLL
45
30
0
28 Apr 2021
Rehearsal revealed: The limits and merits of revisiting samples in
  continual learning
Rehearsal revealed: The limits and merits of revisiting samples in continual learning
Eli Verwimp
Matthias De Lange
Tinne Tuytelaars
CLL
52
108
0
15 Apr 2021
Going deeper with Image Transformers
Going deeper with Image Transformers
Hugo Touvron
Matthieu Cord
Alexandre Sablayrolles
Gabriel Synnaeve
Hervé Jégou
ViT
160
1,021
0
31 Mar 2021
DER: Dynamically Expandable Representation for Class Incremental
  Learning
DER: Dynamically Expandable Representation for Class Incremental Learning
Shipeng Yan
Jiangwei Xie
Xuming He
CLL
67
454
0
31 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
463
21,564
0
25 Mar 2021
ConViT: Improving Vision Transformers with Soft Convolutional Inductive
  Biases
ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases
Stéphane dÁscoli
Hugo Touvron
Matthew L. Leavitt
Ari S. Morcos
Giulio Biroli
Levent Sagun
ViT
133
833
0
19 Mar 2021
Gradient Projection Memory for Continual Learning
Gradient Projection Memory for Continual Learning
Gobinda Saha
Isha Garg
Kaushik Roy
VLMCLL
78
290
0
17 Mar 2021
ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning
  of Deep Neural Networks
ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks
Jungmin Kwon
Jeongseop Kim
Hyunseong Park
I. Choi
98
290
0
23 Feb 2021
Continuum: Simple Management of Complex Continual Learning Scenarios
Continuum: Simple Management of Complex Continual Learning Scenarios
Arthur Douillard
Timothée Lesort
54
38
0
11 Feb 2021
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
389
6,802
0
23 Dec 2020
PLOP: Learning without Forgetting for Continual Semantic Segmentation
PLOP: Learning without Forgetting for Continual Semantic Segmentation
Arthur Douillard
Yifu Chen
Arnaud Dapogny
Matthieu Cord
CLL
51
242
0
23 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
670
41,430
0
22 Oct 2020
Routing Networks with Co-training for Continual Learning
Routing Networks with Co-training for Continual Learning
Mark Collier
Efi Kokiopoulou
Andrea Gesmundo
Jesse Berent
CLL
70
15
0
09 Sep 2020
Continual Learning with Extended Kronecker-factored Approximate
  Curvature
Continual Learning with Extended Kronecker-factored Approximate Curvature
Janghyeon Lee
H. Hong
Donggyu Joo
Junmo Kim
CLL
106
56
0
16 Apr 2020
Memory-Efficient Incremental Learning Through Feature Adaptation
Memory-Efficient Incremental Learning Through Feature Adaptation
Ahmet Iscen
Jeffrey O. Zhang
Svetlana Lazebnik
Cordelia Schmid
CLLVLM
43
164
0
01 Apr 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OODFedMLUQCV
176
493
0
17 Feb 2020
Modeling the Background for Incremental Learning in Semantic
  Segmentation
Modeling the Background for Incremental Learning in Semantic Segmentation
Fabio Cermelli
Massimiliano Mancini
Samuel Rota Buló
Elisa Ricci
Barbara Caputo
CLLVLM
48
284
0
03 Feb 2020
Maintaining Discrimination and Fairness in Class Incremental Learning
Maintaining Discrimination and Fairness in Class Incremental Learning
Bowen Zhao
Xi Xiao
Guojun Gan
Bin Zhang
Shutao Xia
CLL
130
430
0
16 Nov 2019
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
  Transformer
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
Colin Raffel
Noam M. Shazeer
Adam Roberts
Katherine Lee
Sharan Narang
Michael Matena
Yanqi Zhou
Wei Li
Peter J. Liu
AIMat
472
20,317
0
23 Oct 2019
Orthogonal Gradient Descent for Continual Learning
Orthogonal Gradient Descent for Continual Learning
Mehrdad Farajtabar
Navid Azizan
Alex Mott
Ang Li
CLL
99
374
0
15 Oct 2019
Compacting, Picking and Growing for Unforgetting Continual Learning
Compacting, Picking and Growing for Unforgetting Continual Learning
Steven C. Y. Hung
Cheng-Hao Tu
Cheng-En Wu
Chien-Hung Chen
Yi-Ming Chan
Chu-Song Chen
CLL
64
316
0
15 Oct 2019
REMIND Your Neural Network to Prevent Catastrophic Forgetting
REMIND Your Neural Network to Prevent Catastrophic Forgetting
Tyler L. Hayes
Kushal Kafle
Robik Shrestha
Manoj Acharya
Christopher Kanan
CLL
116
300
0
06 Oct 2019
An Adaptive Random Path Selection Approach for Incremental Learning
An Adaptive Random Path Selection Approach for Incremental Learning
Jathushan Rajasegaran
Munawar Hayat
Salman Khan
Fahad Shahbaz Khan
Ling Shao
Ming-Hsuan Yang
ODLCLL
59
24
0
03 Jun 2019
Large Scale Incremental Learning
Large Scale Incremental Learning
Yue Wu
Yinpeng Chen
Lijuan Wang
Yuancheng Ye
Zicheng Liu
Yandong Guo
Y. Fu
CLL
102
1,258
0
30 May 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for
  Deep Neural Networks
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
68
545
0
27 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
622
4,802
0
13 May 2019
M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental
  Learning
M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning
Peng Zhou
Long Mai
Jianming Zhang
N. Xu
Zuxuan Wu
L. Davis
CLLVLM
60
55
0
03 Apr 2019
Learn to Grow: A Continual Structure Learning Framework for Overcoming
  Catastrophic Forgetting
Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting
Xilai Li
Yingbo Zhou
Tianfu Wu
R. Socher
Caiming Xiong
CLL
97
434
0
31 Mar 2019
Continual Learning via Neural Pruning
Continual Learning via Neural Pruning
Siavash Golkar
Michael Kagan
Kyunghyun Cho
CLL
53
161
0
11 Mar 2019
Generative Models from the perspective of Continual Learning
Generative Models from the perspective of Continual Learning
Timothée Lesort
Hugo Caselles-Dupré
Michael Garcia Ortiz
Andrei Stoian
David Filliat
VLMDiffM
52
156
0
21 Dec 2018
Efficient Lifelong Learning with A-GEM
Efficient Lifelong Learning with A-GEM
Arslan Chaudhry
MarcÁurelio Ranzato
Marcus Rohrbach
Mohamed Elhoseiny
CLL
210
1,461
0
02 Dec 2018
Learning without Memorizing
Learning without Memorizing
Prithviraj Dhar
Rajat Vikram Singh
Kuan-Chuan Peng
Ziyan Wu
Rama Chellappa
CLL
88
486
0
20 Nov 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLMSSLSSeg
1.8K
95,175
0
11 Oct 2018
End-to-End Incremental Learning
End-to-End Incremental Learning
F. M. Castro
M. Marín-Jiménez
Nicolás Guil Mata
Cordelia Schmid
Alahari Karteek
CLL
87
1,160
0
25 Jul 2018
Towards Robust Evaluations of Continual Learning
Towards Robust Evaluations of Continual Learning
Sebastian Farquhar
Y. Gal
CLL
93
308
0
24 May 2018
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle
Michael Carbin
259
3,485
0
09 Mar 2018
12
Next