Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2111.11010
Cited By
v1
v2 (latest)
Density Ratio Estimation via Infinitesimal Classification
22 November 2021
Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Density Ratio Estimation via Infinitesimal Classification"
40 / 40 papers shown
Title
Density Ratio Estimation with Conditional Probability Paths
Hanlin Yu
Arto Klami
Aapo Hyvarinen
Anna Korba
Omar Chehab
124
0
0
04 Feb 2025
Your copula is a classifier in disguise: classification-based copula density estimation
David Huk
Mark Steel
Ritabrata Dutta
175
0
0
05 Nov 2024
High-Dimensional Differential Parameter Inference in Exponential Family using Time Score Matching
Daniel J. Williams
Leyang Wang
Qizhen Ying
Song Liu
Mladen Kolar
81
2
0
14 Oct 2024
Operator-Informed Score Matching for Markov Diffusion Models
Zheyang Shen
Huihui Wang
Marina Riabiz
Chris J. Oates
DiffM
123
0
0
13 Jun 2024
Computing high-dimensional optimal transport by flow neural networks
Chen Xu
Xiuyuan Cheng
Yao Xie
OT
100
5
0
19 May 2023
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
280
30,103
0
01 Mar 2022
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
62
24
0
05 Jul 2021
Variational Diffusion Models
Diederik P. Kingma
Tim Salimans
Ben Poole
Jonathan Ho
DiffM
181
1,130
0
01 Jul 2021
Improved Denoising Diffusion Probabilistic Models
Alex Nichol
Prafulla Dhariwal
DiffM
349
3,702
0
18 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
160
670
0
22 Jan 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
344
6,480
0
26 Nov 2020
Adaptive Path Sampling in Metastable Posterior Distributions
Yuling Yao
Collin Cademartori
Aki Vehtari
Andrew Gelman
TPM
59
6
0
01 Sep 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
96
49
0
24 Aug 2020
Telescoping Density-Ratio Estimation
Benjamin Rhodes
Kai Xu
Michael U. Gutmann
144
96
0
22 Jun 2020
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
650
18,096
0
19 Jun 2020
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew Tancik
Pratul P. Srinivasan
B. Mildenhall
Sara Fridovich-Keil
N. Raghavan
Utkarsh Singhal
R. Ramamoorthi
Jonathan T. Barron
Ren Ng
124
2,421
0
18 Jun 2020
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
258
1,161
0
16 Jun 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
520
42,449
0
03 Dec 2019
Understanding the Limitations of Variational Mutual Information Estimators
Jiaming Song
Stefano Ermon
SSL
DRL
74
203
0
14 Oct 2019
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
258
3,916
0
12 Jul 2019
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
183
777
0
10 Jun 2019
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
113
418
0
17 May 2019
On Variational Bounds of Mutual Information
Ben Poole
Sherjil Ozair
Aaron van den Oord
Alexander A. Alemi
George Tucker
SSL
106
812
0
16 May 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
66
106
0
09 Mar 2019
Formal Limitations on the Measurement of Mutual Information
David A. McAllester
K. Stratos
SSL
68
276
0
10 Nov 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
150
873
0
02 Oct 2018
Representation Learning with Contrastive Predictive Coding
Aaron van den Oord
Yazhe Li
Oriol Vinyals
DRL
SSL
327
10,349
0
10 Jul 2018
Conditional Noise-Contrastive Estimation of Unnormalised Models
Ciwan Ceylan
Michael U. Gutmann
59
42
0
10 Jun 2018
Group Normalization
Yuxin Wu
Kaiming He
231
3,669
0
22 Mar 2018
Learning Weighted Representations for Generalization Across Designs
Fredrik D. Johansson
Nathan Kallus
Uri Shalit
David Sontag
OOD
68
87
0
23 Feb 2018
MINE: Mutual Information Neural Estimation
Mohamed Ishmael Belghazi
A. Baratin
Sai Rajeswar
Sherjil Ozair
Yoshua Bengio
Aaron Courville
R. Devon Hjelm
DRL
194
1,280
0
12 Jan 2018
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
154
1,656
0
02 Jun 2016
Identity Mappings in Deep Residual Networks
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
354
10,184
0
16 Mar 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
105
485
0
10 Feb 2016
The sample size required in importance sampling
S. Chatterjee
P. Diaconis
116
191
0
04 Nov 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,196
0
18 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
306
6,949
0
12 Mar 2015
Accurate and Conservative Estimates of MRF Log-likelihood using Reverse Annealing
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
TPM
144
67
0
30 Dec 2014
Bregman divergence as general framework to estimate unnormalized statistical models
Michael U. Gutmann
J. Hirayama
77
80
0
14 Feb 2012
Relative Density-Ratio Estimation for Robust Distribution Comparison
M. Yamada
Taiji Suzuki
Takafumi Kanamori
Hirotaka Hachiya
Masashi Sugiyama
92
221
0
23 Jun 2011
1