ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.02552
  4. Cited By
Is Bang-Bang Control All You Need? Solving Continuous Control with
  Bernoulli Policies

Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies

3 November 2021
Tim Seyde
Igor Gilitschenski
Wilko Schwarting
Bartolomeo Stellato
Martin Riedmiller
Markus Wulfmeier
Daniela Rus
ArXiv (abs)PDFHTML

Papers citing "Is Bang-Bang Control All You Need? Solving Continuous Control with Bernoulli Policies"

28 / 28 papers shown
Title
MPC-based Reinforcement Learning for Economic Problems with Application
  to Battery Storage
MPC-based Reinforcement Learning for Economic Problems with Application to Battery Storage
Arash Bahari Kordabad
W. Cai
S. Gros
45
27
0
06 Apr 2021
Tonic: A Deep Reinforcement Learning Library for Fast Prototyping and
  Benchmarking
Tonic: A Deep Reinforcement Learning Library for Fast Prototyping and Benchmarking
Fabio Pardo
OffRL
45
31
0
15 Nov 2020
Learning to Plan Optimistically: Uncertainty-Guided Deep Exploration via
  Latent Model Ensembles
Learning to Plan Optimistically: Uncertainty-Guided Deep Exploration via Latent Model Ensembles
Tim Seyde
Wilko Schwarting
S. Karaman
Daniela Rus
67
14
0
27 Oct 2020
Learning Quadrupedal Locomotion over Challenging Terrain
Learning Quadrupedal Locomotion over Challenging Terrain
Joonho Lee
Jemin Hwangbo
Lorenz Wellhausen
V. Koltun
Marco Hutter
145
1,177
0
21 Oct 2020
Mastering Atari with Discrete World Models
Mastering Atari with Discrete World Models
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
DRL
123
869
0
05 Oct 2020
Reinforcement Learning of Musculoskeletal Control from Functional
  Simulations
Reinforcement Learning of Musculoskeletal Control from Functional Simulations
Emanuel Joos
Fabien Péan
Orçun Göksel
AI4CE
58
12
0
13 Jul 2020
dm_control: Software and Tasks for Continuous Control
dm_control: Software and Tasks for Continuous Control
Yuval Tassa
S. Tunyasuvunakool
Alistair Muldal
Yotam Doron
Piotr Trochim
...
Steven Bohez
J. Merel
Tom Erez
Timothy Lillicrap
N. Heess
LM&Ro
96
417
0
22 Jun 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
120
226
0
01 Jun 2020
An empirical investigation of the challenges of real-world reinforcement
  learning
An empirical investigation of the challenges of real-world reinforcement learning
Gabriel Dulac-Arnold
Nir Levine
D. Mankowitz
Jerry Li
Cosmin Paduraru
Sven Gowal
Todd Hester
OffRL
86
125
0
24 Mar 2020
Discrete Action On-Policy Learning with Action-Value Critic
Discrete Action On-Policy Learning with Action-Value Critic
Yuguang Yue
Yunhao Tang
Mingzhang Yin
Mingyuan Yin
OffRL
46
5
0
10 Feb 2020
Growing Action Spaces
Growing Action Spaces
Gregory Farquhar
Laura Gustafson
Zeming Lin
Shimon Whiteson
Nicolas Usunier
Gabriel Synnaeve
52
38
0
28 Jun 2019
Learning Gentle Object Manipulation with Curiosity-Driven Deep
  Reinforcement Learning
Learning Gentle Object Manipulation with Curiosity-Driven Deep Reinforcement Learning
Sandy H. Huang
Martina Zambelli
Jackie Kay
M. Martins
Yuval Tassa
P. Pilarski
R. Hadsell
67
51
0
20 Mar 2019
Value constrained model-free continuous control
Value constrained model-free continuous control
Steven Bohez
A. Abdolmaleki
Michael Neunert
J. Buchli
N. Heess
R. Hadsell
57
62
0
12 Feb 2019
Discretizing Continuous Action Space for On-Policy Optimization
Discretizing Continuous Action Space for On-Policy Optimization
Yunhao Tang
Shipra Agrawal
OffRL
91
123
0
29 Jan 2019
Soft Actor-Critic Algorithms and Applications
Soft Actor-Critic Algorithms and Applications
Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
...
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
Sergey Levine
145
2,450
0
13 Dec 2018
Off-Policy Deep Reinforcement Learning without Exploration
Off-Policy Deep Reinforcement Learning without Exploration
Scott Fujimoto
David Meger
Doina Precup
OffRLBDL
251
1,625
0
07 Dec 2018
Relative Entropy Regularized Policy Iteration
Relative Entropy Regularized Policy Iteration
A. Abdolmaleki
Jost Tobias Springenberg
Jonas Degrave
Steven Bohez
Yuval Tassa
Dan Belov
N. Heess
Martin Riedmiller
65
72
0
05 Dec 2018
Remember and Forget for Experience Replay
Remember and Forget for Experience Replay
G. Novati
Petros Koumoutsakos
OffRL
68
92
0
16 Jul 2018
Learning to Run challenge solutions: Adapting reinforcement learning
  methods for neuromusculoskeletal environments
Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments
L. Kidzinski
Sharada Mohanty
Carmichael F. Ong
Zhewei Huang
Shuchang Zhou
...
Sean F. Carroll
Jennifer Hicks
Sergey Levine
M. Salathé
Scott L. Delp
89
88
0
02 Apr 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
  Learning with a Stochastic Actor
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,420
0
04 Jan 2018
Action Branching Architectures for Deep Reinforcement Learning
Action Branching Architectures for Deep Reinforcement Learning
Arash Tavakoli
Fabio Pardo
Petar Kormushev
53
264
0
24 Nov 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
544
19,296
0
20 Jul 2017
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
363
5,388
0
03 Nov 2016
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
200
2,541
0
02 Nov 2016
Safe and Efficient Off-Policy Reinforcement Learning
Safe and Efficient Off-Policy Reinforcement Learning
Rémi Munos
T. Stepleton
Anna Harutyunyan
Marc G. Bellemare
OffRL
138
618
0
08 Jun 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
96
1,695
0
22 Apr 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
327
13,289
0
09 Sep 2015
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
396
3,157
0
15 Aug 2013
1