ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.02338
  4. Cited By
Drop, Swap, and Generate: A Self-Supervised Approach for Generating
  Neural Activity

Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity

3 November 2021
Ran Liu
Mehdi Azabou
M. Dabagia
Chi-Heng Lin
M. G. Azar
Keith B. Hengen
Michal Valko
Eva L. Dyer
    OCLSSLDRL
ArXiv (abs)PDFHTML

Papers citing "Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity"

33 / 33 papers shown
Title
Your contrastive learning problem is secretly a distribution alignment problem
Your contrastive learning problem is secretly a distribution alignment problem
Zihao Chen
Chi-Heng Lin
Ran Liu
Jingyun Xiao
Eva L. Dyer
126
1
0
27 Feb 2025
ScaleNet: An Unsupervised Representation Learning Method for Limited
  Information
ScaleNet: An Unsupervised Representation Learning Method for Limited Information
Huili Huang
M. M. Roozbahani
SSL
108
804
0
03 Oct 2023
Representation learning for neural population activity with Neural Data
  Transformers
Representation learning for neural population activity with Neural Data Transformers
Joel Ye
C. Pandarinath
AI4TSAI4CE
226
57
0
02 Aug 2021
Mine Your Own vieW: Self-Supervised Learning Through Across-Sample
  Prediction
Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction
Mehdi Azabou
M. G. Azar
Ran Liu
Chi-Heng Lin
Erik C. Johnson
...
Lindsey Kitchell
Keith B. Hengen
William R. Gray Roncal
Michal Valko
Eva L. Dyer
AI4TS
76
57
0
19 Feb 2021
Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
258
4,076
0
20 Nov 2020
Learning identifiable and interpretable latent models of
  high-dimensional neural activity using pi-VAE
Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
Ding Zhou
Xue-Xin Wei
DRL
245
84
0
09 Nov 2020
Unsupervised Learning of Visual Features by Contrasting Cluster
  Assignments
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Mathilde Caron
Ishan Misra
Julien Mairal
Priya Goyal
Piotr Bojanowski
Armand Joulin
OCLSSL
267
4,101
0
17 Jun 2020
Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre Harvey Richemond
...
M. G. Azar
Bilal Piot
Koray Kavukcuoglu
Rémi Munos
Michal Valko
SSL
401
6,844
0
13 Jun 2020
What Makes for Good Views for Contrastive Learning?
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
116
1,337
0
20 May 2020
Bootstrap Latent-Predictive Representations for Multitask Reinforcement
  Learning
Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning
Z. Guo
Bernardo Avila-Pires
Bilal Piot
Jean-Bastien Grill
Florent Altché
Rémi Munos
M. G. Azar
BDLDRLSSL
180
143
0
30 Apr 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
527
10,591
0
17 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
390
18,897
0
13 Feb 2020
Self-Supervised Learning of Pretext-Invariant Representations
Self-Supervised Learning of Pretext-Invariant Representations
Ishan Misra
Laurens van der Maaten
SSLVLM
108
1,458
0
04 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
553
42,639
0
03 Dec 2019
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
216
12,136
0
13 Nov 2019
Self-supervised Label Augmentation via Input Transformations
Self-supervised Label Augmentation via Input Transformations
Hankook Lee
Sung Ju Hwang
Jinwoo Shin
SSL
47
62
0
14 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
73
598
0
10 Jul 2019
On the Fairness of Disentangled Representations
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaMLDRL
75
227
0
31 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
85
210
0
29 May 2019
Deep Random Splines for Point Process Intensity Estimation of Neural
  Population Data
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data
Gabriel Loaiza-Ganem
Sean M. Perkins
Karen E. Schroeder
Mark M. Churchland
John P. Cunningham
3DPC
62
14
0
06 Mar 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
619
10,595
0
12 Dec 2018
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCLDRL
111
480
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
139
1,473
0
29 Nov 2018
Style Separation and Synthesis via Generative Adversarial Networks
Style Separation and Synthesis via Generative Adversarial Networks
Harry Sevi
Sheng Tang
Yu Li
Junbo Guo
Yongdong Zhang
Jintao Li
Shuicheng Yan
GAN
52
17
0
07 Nov 2018
Adversarial Domain Adaptation for Stable Brain-Machine Interfaces
Adversarial Domain Adaptation for Stable Brain-Machine Interfaces
A. Farshchian
J. A. Gallego
Joseph Paul Cohen
Yoshua Bengio
L. Miller
S. Solla
OOD
63
75
0
28 Sep 2018
Understanding disentangling in $β$-VAE
Understanding disentangling in βββ-VAE
Christopher P. Burgess
I. Higgins
Arka Pal
Loic Matthey
Nicholas Watters
Guillaume Desjardins
Alexander Lerchner
CoGeDRL
71
832
0
10 Apr 2018
Multi-style Generative Network for Real-time Transfer
Multi-style Generative Network for Real-time Transfer
Hang Zhang
Kristin J. Dana
75
280
0
20 Mar 2017
Arbitrary Style Transfer in Real-time with Adaptive Instance
  Normalization
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Xun Huang
Serge J. Belongie
OOD
181
4,378
0
20 Mar 2017
Disentangling factors of variation in deep representations using
  adversarial training
Disentangling factors of variation in deep representations using adversarial training
Michaël Mathieu
Jiaqi Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
DRLCML
125
490
0
10 Nov 2016
Linear dynamical neural population models through nonlinear embeddings
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
81
155
0
26 May 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
A Recurrent Latent Variable Model for Sequential Data
A Recurrent Latent Variable Model for Sequential Data
Junyoung Chung
Kyle Kastner
Laurent Dinh
Kratarth Goel
Aaron Courville
Yoshua Bengio
DRLBDL
111
1,262
0
07 Jun 2015
Variational Recurrent Auto-Encoders
Variational Recurrent Auto-Encoders
Otto Fabius
Joost R. van Amersfoort
GANBDLDRL
94
247
0
20 Dec 2014
1