ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.01968
  4. Cited By
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent
  Advances and Applications

A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications

3 November 2021
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
    UQCV
    UD
ArXivPDFHTML

Papers citing "A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications"

21 / 71 papers shown
Title
Structured Uncertainty Prediction Networks
Structured Uncertainty Prediction Networks
Garoe Dorta
Sara Vicente
Lourdes Agapito
Neill D. F. Campbell
Ivor J. A. Simpson
UQCV
66
63
0
20 Feb 2018
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Mattias Teye
Hossein Azizpour
Kevin Smith
BDL
UQCV
147
241
0
18 Feb 2018
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
  Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
432
13,132
0
07 Feb 2018
Noisy Natural Gradient as Variational Inference
Noisy Natural Gradient as Variational Inference
Guodong Zhang
Shengyang Sun
David Duvenaud
Roger C. Grosse
ODL
67
212
0
06 Dec 2017
Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for
  Bayesian learning
Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning
Rui Luo
Jianhong Wang
Yaodong Yang
Zhanxing Zhu
Jun Wang
62
13
0
30 Nov 2017
Deep and Confident Prediction for Time Series at Uber
Deep and Confident Prediction for Time Series at Uber
Lingxue Zhu
N. Laptev
BDL
AI4TS
151
345
0
06 Sep 2017
Multimodal Machine Learning: A Survey and Taxonomy
Multimodal Machine Learning: A Survey and Taxonomy
T. Baltrušaitis
Chaitanya Ahuja
Louis-Philippe Morency
91
2,928
0
26 May 2017
Concrete Dropout
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
179
591
0
22 May 2017
Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI
  Super-Resolution
Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution
Ryutaro Tanno
Daniel E. Worrall
Aurobrata Ghosh
Enrico Kaden
S. Sotiropoulos
A. Criminisi
Daniel C. Alexander
UQCV
DiffM
MedIm
SupR
74
152
0
01 May 2017
A Siamese Deep Forest
A Siamese Deep Forest
Lev V. Utkin
M. Ryabinin
90
67
0
27 Apr 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
52
597
0
13 Apr 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
352
4,705
0
15 Mar 2017
Deep Forest
Deep Forest
Zhi Zhou
Ji Feng
99
1,010
0
28 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,811
0
05 Dec 2016
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
357
7,504
0
02 Dec 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
1.1K
15,798
0
02 Nov 2015
Modelling Uncertainty in Deep Learning for Camera Relocalization
Modelling Uncertainty in Deep Learning for Camera Relocalization
Alex Kendall
R. Cipolla
BDL
45
540
0
19 Sep 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
220
1,511
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
818
9,306
0
06 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
310
4,179
0
21 May 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
106
910
0
17 Feb 2014
Previous
12