Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.11216
Cited By
User-friendly introduction to PAC-Bayes bounds
21 October 2021
Pierre Alquier
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"User-friendly introduction to PAC-Bayes bounds"
50 / 159 papers shown
Title
Tighter Generalisation Bounds via Interpolation
Paul Viallard
Maxime Haddouche
Umut Simsekli
Benjamin Guedj
11
3
0
07 Feb 2024
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
Hossein Zakerinia
Amin Behjati
Christoph H. Lampert
FedML
22
4
0
06 Feb 2024
Generalization and Informativeness of Conformal Prediction
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Fredrik Hellström
34
6
0
22 Jan 2024
PAC-Bayes-Chernoff bounds for unbounded losses
Ioar Casado
Luis A. Ortega
A. Masegosa
Aritz Pérez Martínez
29
6
0
02 Jan 2024
PAC-Bayesian Domain Adaptation Bounds for Multi-view learning
Mehdi Hennequin
K. Benabdeslem
H. Elghazel
28
0
0
02 Jan 2024
A note on regularised NTK dynamics with an application to PAC-Bayesian training
Eugenio Clerico
Benjamin Guedj
33
0
0
20 Dec 2023
PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable RNNs
Deividas Eringis
J. Leth
Zheng-Hua Tan
Rafal Wisniewski
M. Petreczky
17
3
0
15 Dec 2023
A Note on the Convergence of Denoising Diffusion Probabilistic Models
S. Mbacke
Omar Rivasplata
DiffM
21
5
0
10 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
55
4
0
07 Dec 2023
From Mutual Information to Expected Dynamics: New Generalization Bounds for Heavy-Tailed SGD
Benjamin Dupuis
Paul Viallard
18
3
0
01 Dec 2023
Time-Uniform Confidence Spheres for Means of Random Vectors
Ben Chugg
Hongjian Wang
Aaditya Ramdas
43
5
0
14 Nov 2023
A PAC-Bayesian Perspective on the Interpolating Information Criterion
Liam Hodgkinson
Christopher van der Heide
Roberto Salomone
Fred Roosta
Michael W. Mahoney
35
1
0
13 Nov 2023
Information-Theoretic Generalization Bounds for Transductive Learning and its Applications
Huayi Tang
Yong Liu
57
1
0
08 Nov 2023
Sample-Conditioned Hypothesis Stability Sharpens Information-Theoretic Generalization Bounds
Ziqiao Wang
Yongyi Mao
22
5
0
31 Oct 2023
Estimating optimal PAC-Bayes bounds with Hamiltonian Monte Carlo
Szilvia Ujváry
Gergely Flamich
Vincent Fortuin
José Miguel Hernández Lobato
20
0
0
30 Oct 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
27
0
0
23 Oct 2023
Federated Learning with Nonvacuous Generalisation Bounds
Pierre Jobic
Maxime Haddouche
Benjamin Guedj
FedML
27
3
0
17 Oct 2023
Comparing Comparators in Generalization Bounds
Fredrik Hellström
Benjamin Guedj
23
4
0
16 Oct 2023
Statistical guarantees for stochastic Metropolis-Hastings
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
28
1
0
13 Oct 2023
Statistical Guarantees for Variational Autoencoders using PAC-Bayesian Theory
S. Mbacke
Florence Clerc
Pascal Germain
DRL
20
10
0
07 Oct 2023
A path-norm toolkit for modern networks: consequences, promises and challenges
Antoine Gonon
Nicolas Brisebarre
E. Riccietti
Rémi Gribonval
24
6
0
02 Oct 2023
Importance-Weighted Offline Learning Done Right
Germano Gabbianelli
Gergely Neu
Matteo Papini
OffRL
19
5
0
27 Sep 2023
Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures
H. Flynn
David Reeb
M. Kandemir
Jan Peters
21
6
0
25 Sep 2023
Learning to Warm-Start Fixed-Point Optimization Algorithms
Rajiv Sambharya
Georgina Hall
Brandon Amos
Bartolomeo Stellato
30
12
0
14 Sep 2023
Information-theoretic Analysis of Test Data Sensitivity in Uncertainty
Futoshi Futami
Tomoharu Iwata
UD
PER
17
3
0
23 Jul 2023
Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles
Kevin Scaman
Mathieu Even
B. L. Bars
Laurent Massoulié
9
1
0
10 Jul 2023
BOF-UCB: A Bayesian-Optimistic Frequentist Algorithm for Non-Stationary Contextual Bandits
Nicklas Werge
Abdullah Akgul
M. Kandemir
35
0
0
07 Jul 2023
Sparsity-aware generalization theory for deep neural networks
Ramchandran Muthukumar
Jeremias Sulam
MLT
16
4
0
01 Jul 2023
Local Risk Bounds for Statistical Aggregation
Jaouad Mourtada
Tomas Vavskevivcius
Nikita Zhivotovskiy
22
1
0
29 Jun 2023
More PAC-Bayes bounds: From bounded losses, to losses with general tail behaviors, to anytime validity
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
26
9
0
21 Jun 2023
On Certified Generalization in Structured Prediction
Bastian Boll
Christoph Schnörr
21
0
0
15 Jun 2023
MMD-FUSE: Learning and Combining Kernels for Two-Sample Testing Without Data Splitting
Felix Biggs
Antonin Schrab
A. Gretton
17
19
0
14 Jun 2023
Lessons from Generalization Error Analysis of Federated Learning: You May Communicate Less Often!
Milad Sefidgaran
Romain Chor
A. Zaidi
Yijun Wan
FedML
27
6
0
09 Jun 2023
Improved Stability and Generalization Guarantees of the Decentralized SGD Algorithm
B. L. Bars
A. Bellet
Marc Tommasi
Kevin Scaman
Giovanni Neglia
16
1
0
05 Jun 2023
Decentralized SGD and Average-direction SAM are Asymptotically Equivalent
Tongtian Zhu
Fengxiang He
Kaixuan Chen
Mingli Song
Dacheng Tao
34
15
0
05 Jun 2023
Exponential Smoothing for Off-Policy Learning
Imad Aouali
Victor-Emmanuel Brunel
D. Rohde
Anna Korba
OffRL
30
11
0
25 May 2023
A Rigorous Link between Deep Ensembles and (Variational) Bayesian Methods
Veit Wild
Sahra Ghalebikesabi
Dino Sejdinovic
Jeremias Knoblauch
BDL
UQCV
27
13
0
24 May 2023
Generalization Bounds for Neural Belief Propagation Decoders
S. Adiga
Xin Xiao
Ravi Tandon
Bane V. Vasic
Tamal Bose
BDL
AI4CE
22
4
0
17 May 2023
Exactly Tight Information-Theoretic Generalization Error Bound for the Quadratic Gaussian Problem
Ruida Zhou
C. Tian
Tie Liu
36
3
0
01 May 2023
Exponential Stochastic Inequality
Peter Grünwald
M. F. Pérez-Ortiz
Zakaria Mhammedi
21
1
0
27 Apr 2023
Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to Explain Generalisation
Maxime Haddouche
Benjamin Guedj
25
0
0
14 Apr 2023
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning
Micah Goldblum
Marc Finzi
K. Rowan
A. Wilson
UQCV
FedML
16
37
0
11 Apr 2023
PAC-Bayesian bounds for learning LTI-ss systems with input from empirical loss
Deividas Eringis
J. Leth
Z. Tan
R. Wisniewski
M. Petreczky
11
3
0
29 Mar 2023
PAC-Bayes Bounds for High-Dimensional Multi-Index Models with Unknown Active Dimension
Maximilian F. Steffen
30
1
0
23 Mar 2023
Bayes Complexity of Learners vs Overfitting
Grzegorz Gluch
R. Urbanke
UQCV
BDL
9
0
0
13 Mar 2023
Learning Hybrid Interpretable Models: Theory, Taxonomy, and Methods
Julien Ferry
Gabriel Laberge
Ulrich Aivodji
26
5
0
08 Mar 2023
Bayes meets Bernstein at the Meta Level: an Analysis of Fast Rates in Meta-Learning with PAC-Bayes
Charles Riou
Pierre Alquier
Badr-Eddine Chérief-Abdellatif
40
8
0
23 Feb 2023
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
S. Mbacke
Florence Clerc
Pascal Germain
24
8
0
17 Feb 2023
Tighter PAC-Bayes Bounds Through Coin-Betting
Kyoungseok Jang
Kwang-Sung Jun
Ilja Kuzborskij
Francesco Orabona
26
15
0
12 Feb 2023
A unified recipe for deriving (time-uniform) PAC-Bayes bounds
Ben Chugg
Hongjian Wang
Aaditya Ramdas
24
24
0
07 Feb 2023
Previous
1
2
3
4
Next