Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.08105
Cited By
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings
15 October 2021
Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings"
30 / 30 papers shown
Title
SAIF: Sparse Adversarial and Imperceptible Attack Framework
Tooba Imtiaz
Morgan Kohler
Jared Miller
Zifeng Wang
Octavia Camps
Mario Sznaier
Octavia Camps
Jennifer Dy
AAML
55
0
0
14 Dec 2022
Complexity of Linear Minimization and Projection on Some Sets
Cyrille W. Combettes
Sebastian Pokutta
24
39
0
25 Jan 2021
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
168
671
0
28 Dec 2020
Deep Neural Network Training with Frank-Wolfe
Sebastian Pokutta
Christoph Spiegel
Max Zimmer
26
24
0
14 Oct 2020
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar
Gideon Dresdner
Alicia Y. Tsai
L. Ghaoui
Francesco Locatello
Robert M. Freund
Fabian Pedregosa
37
24
0
27 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
54
304
0
08 Jan 2020
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
35
279
0
29 Oct 2019
A Rate-Distortion Framework for Explaining Neural Network Decisions
Jan Macdonald
S. Wäldchen
Sascha Hauch
Gitta Kutyniok
31
40
0
27 May 2019
Stochastic Conditional Gradient++
Hamed Hassani
Amin Karbasi
Aryan Mokhtari
Zebang Shen
31
22
0
19 Feb 2019
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
25
40
0
19 Nov 2018
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
70
1,849
0
31 May 2018
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
41
113
0
24 Apr 2018
Deep Learning for Medical Image Analysis
Mina Rezaei
Haojin Yang
Christoph Meinel
57
2,047
0
17 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
265
2,248
0
24 Jun 2017
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
179
2,211
0
12 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
422
129,831
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
405
21,459
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
45
1,514
0
11 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
343
3,742
0
28 Feb 2017
Lazifying Conditional Gradient Algorithms
Gábor Braun
Sebastian Pokutta
Daniel Zink
34
50
0
17 Oct 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
47
139
0
27 Jul 2016
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Simon Lacoste-Julien
53
194
0
01 Jul 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
478
16,765
0
16 Feb 2016
Variance-Reduced and Projection-Free Stochastic Optimization
Elad Hazan
Haipeng Luo
37
165
0
05 Feb 2016
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
Simon Lacoste-Julien
Martin Jaggi
52
410
0
18 Nov 2015
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
99
1,189
0
21 Sep 2015
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
159
4,653
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
822
99,991
0
04 Sep 2014
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
582
23,235
0
03 Jun 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
152
7,252
0
20 Dec 2013
1