ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.08105
  4. Cited By
Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps
  and Relevance Orderings

Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings

15 October 2021
Jan Macdonald
Mathieu Besançon
Sebastian Pokutta
ArXivPDFHTML

Papers citing "Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings"

30 / 30 papers shown
Title
SAIF: Sparse Adversarial and Imperceptible Attack Framework
SAIF: Sparse Adversarial and Imperceptible Attack Framework
Tooba Imtiaz
Morgan Kohler
Jared Miller
Zifeng Wang
Octavia Camps
Mario Sznaier
Octavia Camps
Jennifer Dy
AAML
48
0
0
14 Dec 2022
Complexity of Linear Minimization and Projection on Some Sets
Complexity of Linear Minimization and Projection on Some Sets
Cyrille W. Combettes
Sebastian Pokutta
21
39
0
25 Jan 2021
A Survey on Neural Network Interpretability
A Survey on Neural Network Interpretability
Yu Zhang
Peter Tiño
A. Leonardis
K. Tang
FaML
XAI
163
671
0
28 Dec 2020
Deep Neural Network Training with Frank-Wolfe
Deep Neural Network Training with Frank-Wolfe
Sebastian Pokutta
Christoph Spiegel
Max Zimmer
24
24
0
14 Oct 2020
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
Geoffrey Negiar
Gideon Dresdner
Alicia Y. Tsai
L. Ghaoui
Francesco Locatello
Robert M. Freund
Fabian Pedregosa
34
24
0
27 Feb 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
52
304
0
08 Jan 2020
Feature relevance quantification in explainable AI: A causal problem
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAtt
CML
33
279
0
29 Oct 2019
A Rate-Distortion Framework for Explaining Neural Network Decisions
A Rate-Distortion Framework for Explaining Neural Network Decisions
Jan Macdonald
S. Wäldchen
Sascha Hauch
Gitta Kutyniok
31
40
0
27 May 2019
Stochastic Conditional Gradient++
Stochastic Conditional Gradient++
Hamed Hassani
Amin Karbasi
Aryan Mokhtari
Zebang Shen
31
22
0
19 Feb 2019
Deep Frank-Wolfe For Neural Network Optimization
Deep Frank-Wolfe For Neural Network Optimization
Leonard Berrada
Andrew Zisserman
M. P. Kumar
ODL
25
40
0
19 Nov 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
63
1,849
0
31 May 2018
Stochastic Conditional Gradient Methods: From Convex Minimization to
  Submodular Maximization
Stochastic Conditional Gradient Methods: From Convex Minimization to Submodular Maximization
Aryan Mokhtari
Hamed Hassani
Amin Karbasi
41
113
0
24 Apr 2018
Deep Learning for Medical Image Analysis
Deep Learning for Medical Image Analysis
Mina Rezaei
Haojin Yang
Christoph Meinel
49
2,047
0
17 Aug 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
261
2,248
0
24 Jun 2017
SmoothGrad: removing noise by adding noise
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
169
2,211
0
12 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
324
129,831
0
12 Jun 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
356
21,459
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
30
1,514
0
11 Apr 2017
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
336
3,742
0
28 Feb 2017
Lazifying Conditional Gradient Algorithms
Lazifying Conditional Gradient Algorithms
Gábor Braun
Sebastian Pokutta
Daniel Zink
32
50
0
17 Oct 2016
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Stochastic Frank-Wolfe Methods for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
47
139
0
27 Jul 2016
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Convergence Rate of Frank-Wolfe for Non-Convex Objectives
Simon Lacoste-Julien
51
194
0
01 Jul 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
420
16,765
0
16 Feb 2016
Variance-Reduced and Projection-Free Stochastic Optimization
Variance-Reduced and Projection-Free Stochastic Optimization
Elad Hazan
Haipeng Luo
33
165
0
05 Feb 2016
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
On the Global Linear Convergence of Frank-Wolfe Optimization Variants
Simon Lacoste-Julien
Martin Jaggi
52
410
0
18 Nov 2015
Evaluating the visualization of what a Deep Neural Network has learned
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
89
1,189
0
21 Sep 2015
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
139
4,653
0
21 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
713
99,991
0
04 Sep 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
539
23,235
0
03 Jun 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
116
7,252
0
20 Dec 2013
1