Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.03372
Cited By
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
6 October 2021
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unifying Likelihood-free Inference with Black-box Optimization and Beyond"
34 / 34 papers shown
Title
Neural Approximate Sufficient Statistics for Implicit Models
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
125
83
0
20 Oct 2020
Error-guided likelihood-free MCMC
Volodimir Begy
Erich Schikuta
25
3
0
13 Oct 2020
ProtTrans: Towards Cracking the Language of Life's Code Through Self-Supervised Deep Learning and High Performance Computing
Ahmed Elnaggar
M. Heinzinger
Christian Dallago
Ghalia Rehawi
Yu Wang
...
Tamas B. Fehér
Christoph Angerer
Martin Steinegger
D. Bhowmik
B. Rost
DRL
30
927
0
13 Jul 2020
Guiding Deep Molecular Optimization with Genetic Exploration
SungSoo Ahn
Junsup Kim
Hankook Lee
Jinwoo Shin
48
73
0
04 Jul 2020
Population-Based Black-Box Optimization for Biological Sequence Design
Christof Angermüller
David Belanger
Andreea Gane
Zelda E. Mariet
David Dohan
Kevin Patrick Murphy
Lucy J. Colwell
D. Sculley
55
133
0
05 Jun 2020
Learning To Navigate The Synthetically Accessible Chemical Space Using Reinforcement Learning
S. Gottipati
B. Sattarov
Sufeng Niu
Yashaswi Pathak
Haoran Wei
...
Simon R. Blackburn
Connor W. Coley
Jian Tang
Sarath Chandar
Yoshua Bengio
30
109
0
26 Apr 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
119
10,591
0
17 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
131
434
0
26 Jan 2020
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AkshatKumar Nigam
Pascal Friederich
Mario Krenn
Alán Aspuru-Guzik
AI4CE
31
131
0
25 Sep 2019
Evaluating Protein Transfer Learning with TAPE
Roshan Rao
Nicholas Bhattacharya
Neil Thomas
Yan Duan
Xi Chen
John F. Canny
Pieter Abbeel
Yun S. Song
SSL
68
786
0
19 Jun 2019
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
106
319
0
17 May 2019
Adaptive Gaussian Copula ABC
Yanzhi Chen
Michael U. Gutmann
TPM
62
27
0
27 Feb 2019
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
41
197
0
29 Jan 2019
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
62
537
0
19 Oct 2018
Design by adaptive sampling
David H. Brookes
Jennifer Listgarten
TPM
64
66
0
08 Oct 2018
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
74
181
0
30 May 2018
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
71
125
0
23 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
180
360
0
18 May 2018
Derivative free optimization via repeated classification
Tatsunori B. Hashimoto
Steve Yadlowsky
John C. Duchi
17
18
0
11 Apr 2018
Approximating the Likelihood in Approximate Bayesian Computation
Christopher C. Drovandi
Clara Grazian
Kerrie Mengersen
Christian P. Robert
36
12
0
18 Mar 2018
A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks
Jeffrey Chan
Valerio Perrone
J. Spence
Paul A. Jenkins
Sara Mathieson
Yun S. Song
64
106
0
16 Feb 2018
Regularized Evolution for Image Classifier Architecture Search
Esteban Real
A. Aggarwal
Yanping Huang
Quoc V. Le
117
3,009
0
05 Feb 2018
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
78
241
0
06 Nov 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
62
523
0
30 May 2017
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
90
1,340
0
19 May 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
56
1,523
0
10 Mar 2017
Likelihood-free inference by ratio estimation
Owen Thomas
Ritabrata Dutta
J. Corander
Samuel Kaski
Michael U. Gutmann
95
147
0
30 Nov 2016
Automatic chemical design using a data-driven continuous representation of molecules
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
111
2,911
0
07 Oct 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
76
158
0
20 May 2016
Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model
Jingjing Li
David J. Nott
Yanan Fan
Scott A. Sisson
63
42
0
16 Apr 2015
Likelihood-free inference via classification
Michael U. Gutmann
Ritabrata Dutta
Samuel Kaski
J. Corander
62
63
0
18 Jul 2014
Approximate Bayesian Computational methods
Jean-Michel Marin
Pierre Pudlo
Christian P. Robert
Robin J. Ryder
136
861
0
05 Jan 2011
Approximate Bayesian Computation: a nonparametric perspective
M. Blum
97
240
0
03 Apr 2009
Adaptive approximate Bayesian computation
Mark Beaumont
J. Cornuet
Jean-Michel Marin
Christian P. Robert
95
641
0
15 May 2008
1