ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09048
  4. Cited By
A framework for benchmarking uncertainty in deep regression

A framework for benchmarking uncertainty in deep regression

10 September 2021
F. Schmähling
Jörg Martin
Clemens Elster
    UQCV
ArXivPDFHTML

Papers citing "A framework for benchmarking uncertainty in deep regression"

7 / 7 papers shown
Title
Lightning UQ Box: A Comprehensive Framework for Uncertainty
  Quantification in Deep Learning
Lightning UQ Box: A Comprehensive Framework for Uncertainty Quantification in Deep Learning
Nils Lehmann
Jakob Gawlikowski
Adam J. Stewart
Vytautas Jancauskas
Stefan Depeweg
Eric T. Nalisnick
N. Gottschling
42
0
0
04 Oct 2024
Measurement Uncertainty: Relating the uncertainties of physical and
  virtual measurements
Measurement Uncertainty: Relating the uncertainties of physical and virtual measurements
Simon Cramer
Tobias Müller
Robert H. Schmitt
27
2
0
21 Feb 2024
MUBen: Benchmarking the Uncertainty of Molecular Representation Models
MUBen: Benchmarking the Uncertainty of Molecular Representation Models
Yinghao Li
Lingkai Kong
Yuanqi Du
Yue Yu
Yuchen Zhuang
Wenhao Mu
Chao Zhang
27
9
0
14 Jun 2023
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing,
  and Improving Uncertainty Quantification
Uncertainty Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty Quantification
Youngseog Chung
I. Char
Han Guo
J. Schneider
W. Neiswanger
38
70
0
21 Sep 2021
Aleatoric uncertainty for Errors-in-Variables models in deep regression
Aleatoric uncertainty for Errors-in-Variables models in deep regression
J. Martin
Clemens Elster
UQCV
UD
BDL
17
8
0
19 May 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Improving neural networks by preventing co-adaptation of feature
  detectors
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
1