ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.09095
19
8

Aleatoric uncertainty for Errors-in-Variables models in deep regression

19 May 2021
J. Martin
Clemens Elster
    UQCV
    UD
    BDL
ArXivPDFHTML
Abstract

A Bayesian treatment of deep learning allows for the computation of uncertainties associated with the predictions of deep neural networks. We show how the concept of Errors-in-Variables can be used in Bayesian deep regression to also account for the uncertainty associated with the input of the employed neural network. The presented approach thereby exploits a relevant, but generally overlooked, source of uncertainty and yields a decomposition of the predictive uncertainty into an aleatoric and epistemic part that is more complete and, in many cases, more consistent from a statistical perspective. We discuss the approach along various simulated and real examples and observe that using an Errors-in-Variables model leads to an increase in the uncertainty while preserving the prediction performance of models without Errors-in-Variables. For examples with known regression function we observe that this ground truth is substantially better covered by the Errors-in-Variables model, indicating that the presented approach leads to a more reliable uncertainty estimation.

View on arXiv
Comments on this paper