ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.05364
  4. Cited By
Structure-preserving Sparse Identification of Nonlinear Dynamics for
  Data-driven Modeling

Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling

11 September 2021
Kookjin Lee
Nathaniel Trask
P. Stinis
ArXivPDFHTML

Papers citing "Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling"

19 / 19 papers shown
Title
Discovering Symbolic Differential Equations with Symmetry Invariants
Discovering Symbolic Differential Equations with Symmetry Invariants
Jianke Yang
Manu Bhat
Bryan Hu
Yadi Cao
Nima Dehmamy
Robin Walters
Rose Yu
4
0
0
17 May 2025
Equilibrium Conserving Neural Operators for Super-Resolution Learning
Equilibrium Conserving Neural Operators for Super-Resolution Learning
Vivek Oommen
Andreas E. Robertson
Daniel Diaz
Coleman Alleman
Zhen Zhang
Anthony D. Rollett
George Karniadakis
Rémi Dingreville
35
1
0
18 Apr 2025
Generalizing the SINDy approach with nested neural networks
Generalizing the SINDy approach with nested neural networks
Camilla Fiorini
Clément Flint
Louis Fostier
Emmanuel Franck
Reyhaneh Hashemi
Victor Michel-Dansac
Wassim Tenachi
76
1
0
28 Jan 2025
Efficiently Parameterized Neural Metriplectic Systems
Efficiently Parameterized Neural Metriplectic Systems
Anthony Gruber
Kookjin Lee
Haksoo Lim
Noseong Park
Nathaniel Trask
68
1
0
28 Jan 2025
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Alejandro Castañeda Garcia
Jan van Gemert
Daan Brinks
Nergis Tömen
38
0
0
02 Oct 2024
Symmetry-Informed Governing Equation Discovery
Symmetry-Informed Governing Equation Discovery
Jianke Yang
Wang Rao
Nima Dehmamy
Robin Walters
Rose Yu
42
1
0
27 May 2024
AI-Lorenz: A physics-data-driven framework for black-box and gray-box
  identification of chaotic systems with symbolic regression
AI-Lorenz: A physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression
Mario De Florio
Ioannis G. Kevrekidis
George Karniadakis
49
16
0
21 Dec 2023
Interpretable Neural PDE Solvers using Symbolic Frameworks
Interpretable Neural PDE Solvers using Symbolic Frameworks
Yolanne Yi Ran Lee
AI4CE
32
0
0
31 Oct 2023
Correcting model misspecification in physics-informed neural networks
  (PINNs)
Correcting model misspecification in physics-informed neural networks (PINNs)
Zongren Zou
Xuhui Meng
George Karniadakis
PINN
29
41
0
16 Oct 2023
Coarse-Graining Hamiltonian Systems Using WSINDy
Coarse-Graining Hamiltonian Systems Using WSINDy
Daniel Messenger
J. Burby
David M. Bortz
51
6
0
09 Oct 2023
Reversible and irreversible bracket-based dynamics for deep graph neural
  networks
Reversible and irreversible bracket-based dynamics for deep graph neural networks
A. Gruber
Kookjin Lee
N. Trask
AI4CE
33
9
0
24 May 2023
Pseudo-Hamiltonian system identification
Pseudo-Hamiltonian system identification
Sigurd Holmsen
Sølve Eidnes
S. Riemer-Sørensen
18
3
0
09 May 2023
Mining Causality from Continuous-time Dynamics Models: An Application to
  Tsunami Forecasting
Mining Causality from Continuous-time Dynamics Models: An Application to Tsunami Forecasting
Fan Wu
Sanghyun Hong
Dobsub Rim
Noseong Park
Kookjin Lee
AI4TS
31
1
0
10 Oct 2022
Parameter-varying neural ordinary differential equations with
  partition-of-unity networks
Parameter-varying neural ordinary differential equations with partition-of-unity networks
Kookjin Lee
N. Trask
22
2
0
01 Oct 2022
Interpretable Polynomial Neural Ordinary Differential Equations
Interpretable Polynomial Neural Ordinary Differential Equations
Colby Fronk
Linda R. Petzold
27
27
0
09 Aug 2022
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces
Sølve Eidnes
Alexander J. Stasik
Camilla Sterud
Eivind Bøhn
S. Riemer-Sørensen
22
17
0
06 Jun 2022
Gaussian processes meet NeuralODEs: A Bayesian framework for learning
  the dynamics of partially observed systems from scarce and noisy data
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
28
20
0
04 Mar 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
139
424
0
10 Mar 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
152
220
0
29 Sep 2019
1