ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00368
22
2

Parameter-varying neural ordinary differential equations with partition-of-unity networks

1 October 2022
Kookjin Lee
N. Trask
ArXivPDFHTML
Abstract

In this study, we propose parameter-varying neural ordinary differential equations (NODEs) where the evolution of model parameters is represented by partition-of-unity networks (POUNets), a mixture of experts architecture. The proposed variant of NODEs, synthesized with POUNets, learn a meshfree partition of space and represent the evolution of ODE parameters using sets of polynomials associated to each partition. We demonstrate the effectiveness of the proposed method for three important tasks: data-driven dynamics modeling of (1) hybrid systems, (2) switching linear dynamical systems, and (3) latent dynamics for dynamical systems with varying external forcing.

View on arXiv
Comments on this paper