ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02660
22
17

Pseudo-Hamiltonian Neural Networks with State-Dependent External Forces

6 June 2022
Sølve Eidnes
Alexander J. Stasik
Camilla Sterud
Eivind Bøhn
S. Riemer-Sørensen
ArXivPDFHTML
Abstract

Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Hamiltonian formulation, and show that pseudo-Hamiltonian neural network models can be used to learn external forces acting on a system. We argue that this property is particularly useful when the external forces are state dependent, in which case it is the pseudo-Hamiltonian structure that facilitates the separation of internal and external forces. Numerical results are provided for a forced and damped mass-spring system and a tank system of higher complexity, and a symmetric fourth-order integration scheme is introduced for improved training on sparse and noisy data.

View on arXiv
Comments on this paper