Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.02429
Cited By
Learning Neural Causal Models with Active Interventions
6 September 2021
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Neural Causal Models with Active Interventions"
31 / 31 papers shown
Title
Can Large Language Models Help Experimental Design for Causal Discovery?
Junyi Li
Yongqiang Chen
Chenxi Liu
Qianyi Cai
Tongliang Liu
Bo Han
Kun Zhang
Hui Xiong
CML
65
0
0
03 Mar 2025
IGDA: Interactive Graph Discovery through Large Language Model Agents
Alex Havrilla
David Alvarez-Melis
Nicolò Fusi
AI4CE
45
0
0
24 Feb 2025
BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning
Hao-ming Lin
Wenhao Ding
Jian Chen
Laixi Shi
Jiacheng Zhu
Bo-wen Li
Ding Zhao
OffRL
CML
44
0
0
15 Jul 2024
The Essential Role of Causality in Foundation World Models for Embodied AI
Tarun Gupta
Wenbo Gong
Chao Ma
Nick Pawlowski
Agrin Hilmkil
...
Jianfeng Gao
Stefan Bauer
Danica Kragic
Bernhard Schölkopf
Cheng Zhang
30
15
0
06 Feb 2024
CORE: Towards Scalable and Efficient Causal Discovery with Reinforcement Learning
Andreas Sauter
N. Botteghi
Erman Acar
Aske Plaat
CML
11
3
0
30 Jan 2024
Multi-omics Prediction from High-content Cellular Imaging with Deep Learning
Rahil Mehrizi
Arash Mehrjou
M. Alegro
Yi Zhao
Benedetta Carbone
...
S. Sanford
Hakan Keles
M. Bantscheff
Cuong Nguyen
Patrick Schwab
13
4
0
15 Jun 2023
Multi-Agent Reinforcement Learning: Methods, Applications, Visionary Prospects, and Challenges
Ziyuan Zhou
Guanjun Liu
Ying-Si Tang
33
14
0
17 May 2023
DiscoGen: Learning to Discover Gene Regulatory Networks
Nan Rosemary Ke
Sara-Jane Dunn
J. Bornschein
Silvia Chiappa
Mélanie Rey
...
David Barrett
M. Botvinick
Anirudh Goyal
Michael C. Mozer
Danilo Jimenez Rezende
BDL
CML
14
4
0
12 Apr 2023
Differentiable Multi-Target Causal Bayesian Experimental Design
Yashas Annadani
P. Tigas
Desi R. Ivanova
Andrew Jesson
Y. Gal
Adam Foster
Stefan Bauer
BDL
CML
18
13
0
21 Feb 2023
GFlowNets for AI-Driven Scientific Discovery
Moksh Jain
T. Deleu
Jason S. Hartford
Cheng-Hao Liu
Alex Hernandez-Garcia
Yoshua Bengio
AI4CE
21
45
0
01 Feb 2023
Trust Your
∇
\nabla
∇
: Gradient-based Intervention Targeting for Causal Discovery
Mateusz Olko
Michal Zajac
A. Nowak
Nino Scherrer
Yashas Annadani
Stefan Bauer
Lukasz Kucinski
Piotr Milos
CML
24
2
0
24 Nov 2022
Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes
Mizu Nishikawa-Toomey
T. Deleu
Jithendaraa Subramanian
Yoshua Bengio
Laurent Charlin
BDL
CML
26
29
0
04 Nov 2022
CausalBench: A Large-scale Benchmark for Network Inference from Single-cell Perturbation Data
Mathieu Chevalley
Yusuf Roohani
Arash Mehrjou
J. Leskovec
Patrick Schwab
CML
18
36
0
31 Oct 2022
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
T. Deleu
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
22
7
0
24 Oct 2022
Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability
Mengdi Xu
Zuxin Liu
Peide Huang
Wenhao Ding
Zhepeng Cen
Bo-wen Li
Ding Zhao
66
45
0
16 Sep 2022
Intrinsically Motivated Learning of Causal World Models
Louis Annabi
CLL
CML
DRL
LRM
11
1
0
09 Aug 2022
Neural Design for Genetic Perturbation Experiments
Aldo Pacchiano
Drausin Wulsin
Robert A. Barton
L. Voloch
27
4
0
26 Jul 2022
Generalizing Goal-Conditioned Reinforcement Learning with Variational Causal Reasoning
Wenhao Ding
Haohong Lin
Bo-wen Li
Ding Zhao
LRM
16
37
0
19 Jul 2022
A Meta-Reinforcement Learning Algorithm for Causal Discovery
Andreas Sauter
Erman Acar
Vincent François-Lavet
CML
13
19
0
18 Jul 2022
Guaranteed Discovery of Control-Endogenous Latent States with Multi-Step Inverse Models
Alex Lamb
Riashat Islam
Yonathan Efroni
Aniket Didolkar
Dipendra Kumar Misra
Dylan J. Foster
Lekan Molu
Rajan Chari
A. Krishnamurthy
John Langford
33
24
0
17 Jul 2022
Latent Variable Models for Bayesian Causal Discovery
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Stefan Bauer
Derek Nowrouzezahrai
Samira Ebrahimi Kahou
CML
BDL
14
1
0
12 Jul 2022
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CML
OOD
BDL
TTA
23
8
0
09 Jun 2022
Active Bayesian Causal Inference
Christian Toth
Lars Lorch
Christian Knoll
Andreas Krause
Franz Pernkopf
Robert Peharz
Julius von Kügelgen
40
26
0
04 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CML
BDL
33
19
0
03 Jun 2022
Towards Fine-grained Causal Reasoning and QA
Linyi Yang
Zhen Wang
Yuxiang Wu
Jie Yang
Yue Zhang
22
15
0
15 Apr 2022
Interventions, Where and How? Experimental Design for Causal Models at Scale
P. Tigas
Yashas Annadani
Andrew Jesson
Bernhard Schölkopf
Y. Gal
Stefan Bauer
CML
29
48
0
03 Mar 2022
Unicorn: Reasoning about Configurable System Performance through the lens of Causality
Md Shahriar Iqbal
R. Krishna
Mohammad Ali Javidian
Baishakhi Ray
Pooyan Jamshidi
LRM
11
27
0
20 Jan 2022
FedDAG: Federated DAG Structure Learning
Erdun Gao
Junjia Chen
Li Shen
Tongliang Liu
Mingming Gong
H. Bondell
FedML
37
17
0
07 Dec 2021
BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery
Chris Cundy
Aditya Grover
Stefano Ermon
CML
40
72
0
06 Dec 2021
GeneDisco: A Benchmark for Experimental Design in Drug Discovery
Arash Mehrjou
Ashkan Soleymani
Andrew Jesson
Pascal Notin
Y. Gal
Stefan Bauer
Patrick Schwab
11
19
0
22 Oct 2021
Learning Sparse Nonparametric DAGs
Xun Zheng
Chen Dan
Bryon Aragam
Pradeep Ravikumar
Eric P. Xing
CML
106
258
0
29 Sep 2019
1