ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.04892
11
1

Intrinsically Motivated Learning of Causal World Models

9 August 2022
Louis Annabi
    CLL
    CML
    DRL
    LRM
ArXivPDFHTML
Abstract

Despite the recent progress in deep learning and reinforcement learning, transfer and generalization of skills learned on specific tasks is very limited compared to human (or animal) intelligence. The lifelong, incremental building of common sense knowledge might be a necessary component on the way to achieve more general intelligence. A promising direction is to build world models capturing the true physical mechanisms hidden behind the sensorimotor interaction with the environment. Here we explore the idea that inferring the causal structure of the environment could benefit from well-chosen actions as means to collect relevant interventional data.

View on arXiv
Comments on this paper