Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01050
Cited By
Characterizing possible failure modes in physics-informed neural networks
2 September 2021
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing possible failure modes in physics-informed neural networks"
25 / 325 papers shown
Title
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
36
17
0
25 Mar 2022
Investigating Compounding Prediction Errors in Learned Dynamics Models
Nathan Lambert
K. Pister
Roberto Calandra
AI4CE
16
27
0
17 Mar 2022
Respecting causality is all you need for training physics-informed neural networks
Sizhuang He
Shyam Sankaran
P. Perdikaris
PINN
CML
AI4CE
46
199
0
14 Mar 2022
Modeling the Shape of the Brain Connectome via Deep Neural Networks
Haocheng Dai
M. Bauer
P. T. Fletcher
S. Joshi
MedIm
DiffM
17
1
0
06 Mar 2022
AutoIP: A United Framework to Integrate Physics into Gaussian Processes
D. Long
Zhilin Wang
Aditi S. Krishnapriyan
Robert M. Kirby
Shandian Zhe
Michael W. Mahoney
AI4CE
29
14
0
24 Feb 2022
Learning Physics-Informed Neural Networks without Stacked Back-propagation
Di He
Shanda Li
Wen-Wu Shi
Xiaotian Gao
Jia Zhang
Jiang Bian
Liwei Wang
Tie-Yan Liu
DiffM
PINN
AI4CE
18
23
0
18 Feb 2022
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
26
33
0
17 Feb 2022
When Do Flat Minima Optimizers Work?
Jean Kaddour
Linqing Liu
Ricardo M. A. Silva
Matt J. Kusner
ODL
24
58
0
01 Feb 2022
Numerical Approximation of Partial Differential Equations by a Variable Projection Method with Artificial Neural Networks
S. Dong
Jielin Yang
40
17
0
24 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
Learning finite difference methods for reaction-diffusion type equations with FCNN
Yongho Kim
Yongho Choi
13
8
0
04 Jan 2022
Learning from learning machines: a new generation of AI technology to meet the needs of science
L. Pion-Tonachini
K. Bouchard
Héctor García Martín
S. Peisert
W. B. Holtz
...
Rick L. Stevens
Mark Anderson
Ken Kreutz-Delgado
Michael W. Mahoney
James B. Brown
32
7
0
27 Nov 2021
On Computing the Hyperparameter of Extreme Learning Machines: Algorithm and Application to Computational PDEs, and Comparison with Classical and High-Order Finite Elements
S. Dong
Jielin Yang
72
52
0
27 Oct 2021
Fast PDE-constrained optimization via self-supervised operator learning
Sizhuang He
Mohamed Aziz Bhouri
P. Perdikaris
47
28
0
25 Oct 2021
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
26
19
0
04 Oct 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
39
65
0
02 Jul 2021
Learning Green's Functions of Linear Reaction-Diffusion Equations with Application to Fast Numerical Solver
Yuankai Teng
Xiaoping Zhang
Zhu Wang
L. Ju
16
14
0
23 May 2021
Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
23
39
0
03 May 2021
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
41
494
0
09 Feb 2021
An overview on deep learning-based approximation methods for partial differential equations
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
30
146
0
22 Dec 2020
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sizhuang He
Hanwen Wang
P. Perdikaris
131
438
0
18 Dec 2020
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
91
387
0
10 Mar 2020
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
139
424
0
10 Mar 2020
Hamiltonian neural networks for solving equations of motion
M. Mattheakis
David Sondak
Akshunna S. Dogra
P. Protopapas
27
56
0
29 Jan 2020
Previous
1
2
3
4
5
6
7