ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.12348
28
146

An overview on deep learning-based approximation methods for partial differential equations

22 December 2020
C. Beck
Martin Hutzenthaler
Arnulf Jentzen
Benno Kuckuck
ArXivPDFHTML
Abstract

It is one of the most challenging problems in applied mathematics to approximatively solve high-dimensional partial differential equations (PDEs). Recently, several deep learning-based approximation algorithms for attacking this problem have been proposed and tested numerically on a number of examples of high-dimensional PDEs. This has given rise to a lively field of research in which deep learning-based methods and related Monte Carlo methods are applied to the approximation of high-dimensional PDEs. In this article we offer an introduction to this field of research by revisiting selected mathematical results related to deep learning approximation methods for PDEs and reviewing the main ideas of their proofs. We also provide a short overview of the recent literature in this area of research.

View on arXiv
Comments on this paper