Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.01050
Cited By
Characterizing possible failure modes in physics-informed neural networks
2 September 2021
Aditi S. Krishnapriyan
A. Gholami
Shandian Zhe
Robert M. Kirby
Michael W. Mahoney
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing possible failure modes in physics-informed neural networks"
50 / 325 papers shown
Title
Neural PDE Solvers for Irregular Domains
Biswajit Khara
Ethan Herron
Zhanhong Jiang
Aditya Balu
Chih-Hsuan Yang
...
Anushrut Jignasu
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
AI4CE
24
7
0
07 Nov 2022
Embed and Emulate: Learning to estimate parameters of dynamical systems with uncertainty quantification
Ruoxi Jiang
Rebecca Willett
25
6
0
03 Nov 2022
Combined space-time reduced-order model with 3D deep convolution for extrapolating fluid dynamics
Indu Kant Deo
Rui Gao
R. Jaiman
AI4CE
22
0
0
01 Nov 2022
Neuro-symbolic partial differential equation solver
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
S. Choudhry
Frédéric Gibou
31
1
0
25 Oct 2022
JAX-DIPS: Neural bootstrapping of finite discretization methods and application to elliptic problems with discontinuities
Pouria A. Mistani
Samira Pakravan
Rajesh Ilango
Frédéric Gibou
16
8
0
25 Oct 2022
SeismicNet: Physics-informed neural networks for seismic wave modeling in semi-infinite domain
Pu Ren
Chengping Rao
Su Chen
Jian-Xun Wang
Hao Sun
Yang Liu
44
41
0
25 Oct 2022
Less Emphasis on Difficult Layer Regions: Curriculum Learning for Singularly Perturbed Convection-Diffusion-Reaction Problems
Yufeng Wang
Cong Xu
Min Yang
Jin Zhang
11
4
0
23 Oct 2022
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks
Shibo Li
Michael Penwarden
Yiming Xu
Conor Tillinghast
Akil Narayan
Robert M. Kirby
Shandian Zhe
AI4CE
18
4
0
23 Oct 2022
Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural Networks on Coupled Ordinary Differential Equations
Alexander New
B. Eng
A. Timm
A. Gearhart
20
4
0
14 Oct 2022
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
30
209
0
13 Oct 2022
A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs
Songming Liu
Zhongkai Hao
Chengyang Ying
Hang Su
Jun Zhu
Ze Cheng
AI4CE
18
17
0
06 Oct 2022
Homotopy-based training of NeuralODEs for accurate dynamics discovery
Joon-Hyuk Ko
Hankyul Koh
Nojun Park
W. Jhe
46
8
0
04 Oct 2022
Random Weight Factorization Improves the Training of Continuous Neural Representations
Sizhuang He
Hanwen Wang
Jacob H. Seidman
P. Perdikaris
26
10
0
03 Oct 2022
Failure-informed adaptive sampling for PINNs
Zhiwei Gao
Liang Yan
Tao Zhou
18
77
0
01 Oct 2022
Implicit Neural Spatial Representations for Time-dependent PDEs
Honglin Chen
Rundi Wu
E. Grinspun
Changxi Zheng
Julius Berner
AI4CE
25
33
0
30 Sep 2022
Variationally Mimetic Operator Networks
Dhruv V. Patel
Deep Ray
M. Abdelmalik
T. Hughes
Assad A. Oberai
55
23
0
26 Sep 2022
Deep Reinforcement Learning for Adaptive Mesh Refinement
C. Foucart
A. Charous
Pierre FJ Lermusiaux
AI4CE
41
22
0
25 Sep 2022
A novel corrective-source term approach to modeling unknown physics in aluminum extraction process
Haakon Robinson
E. Lundby
Adil Rasheed
J. Gravdahl
20
5
0
22 Sep 2022
Approximating the full-field temperature evolution in 3D electronic systems from randomized "Minecraft" systems
Monika Stipsitz
H. Sanchis-Alepuz
AI4CE
21
2
0
21 Sep 2022
Investigating and Mitigating Failure Modes in Physics-informed Neural Networks (PINNs)
S. Basir
PINN
AI4CE
31
21
0
20 Sep 2022
Residual-Quantile Adjustment for Adaptive Training of Physics-informed Neural Network
Jiayue Han
Zhiqiang Cai
Zhiyou Wu
Xiang Zhou
44
7
0
09 Sep 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
31
6
0
07 Sep 2022
NeuralSI: Structural Parameter Identification in Nonlinear Dynamical Systems
Xuyang Li
H. Bolandi
Talal Salem
N. Lajnef
Vishnu Naresh Boddeti
19
2
0
26 Aug 2022
Domain-aware Control-oriented Neural Models for Autonomous Underwater Vehicles
Wenceslao Shaw-Cortez
Soumya Vasisht
Aaron Tuor
Ján Drgoňa
D. Vrabie
AI4CE
15
0
0
15 Aug 2022
PIXEL: Physics-Informed Cell Representations for Fast and Accurate PDE Solvers
Namgyu Kang
Byeonghyeon Lee
Youngjoon Hong
S. Yun
Eunbyung Park
PINN
AI4CE
22
13
0
26 Jul 2022
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
25
22
0
26 Jul 2022
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
Chen-Chun Wu
Min Zhu
Qinyan Tan
Yadhu Kartha
Lu Lu
32
352
0
21 Jul 2022
Learning differentiable solvers for systems with hard constraints
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
31
28
0
18 Jul 2022
Earthformer: Exploring Space-Time Transformers for Earth System Forecasting
Zhihan Gao
Xingjian Shi
Hao Wang
Yi Zhu
Yuyang Wang
Mu Li
Dit-Yan Yeung
AI4TS
39
149
0
12 Jul 2022
Adaptive Self-supervision Algorithms for Physics-informed Neural Networks
Shashank Subramanian
Robert M. Kirby
Michael W. Mahoney
A. Gholami
30
25
0
08 Jul 2022
Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling
Arka Daw
Jie Bu
Sizhuang He
P. Perdikaris
Anuj Karpatne
AI4CE
21
45
0
05 Jul 2022
Evaluating Error Bound for Physics-Informed Neural Networks on Linear Dynamical Systems
Shuheng Liu
Xiyue Huang
P. Protopapas
PINN
24
5
0
03 Jul 2022
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
G. Farhani
Alexander Kazachek
Boyu Wang
21
6
0
29 Jun 2022
Deep Random Vortex Method for Simulation and Inference of Navier-Stokes Equations
Rui Zhang
Peiyan Hu
Qi Meng
Yue Wang
Rongchan Zhu
Bingguang Chen
Zhi-Ming Ma
Tie-Yan Liu
12
13
0
20 Jun 2022
Characterizing and Mitigating the Difficulty in Training Physics-informed Artificial Neural Networks under Pointwise Constraints
S. Basir
Inanc Senocak
AI4CE
27
1
0
19 Jun 2022
Explaining the physics of transfer learning a data-driven subgrid-scale closure to a different turbulent flow
Adam Subel
Yifei Guan
A. Chattopadhyay
P. Hassanzadeh
AI4CE
32
41
0
07 Jun 2022
Is
L
2
L^2
L
2
Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
Chuwei Wang
Shanda Li
Di He
Liwei Wang
AI4CE
PINN
31
28
0
04 Jun 2022
Physical Activation Functions (PAFs): An Approach for More Efficient Induction of Physics into Physics-Informed Neural Networks (PINNs)
J. Abbasi
Paal Ostebo Andersen
PINN
AI4CE
25
14
0
29 May 2022
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
Sen Na
Michael W. Mahoney
34
7
0
27 May 2022
Transformer for Partial Differential Equations' Operator Learning
Zijie Li
Kazem Meidani
A. Farimani
42
140
0
26 May 2022
Accelerated Training of Physics-Informed Neural Networks (PINNs) using Meshless Discretizations
Ramansh Sharma
Varun Shankar
37
40
0
19 May 2022
Finite Element Method-enhanced Neural Network for Forward and Inverse Problems
R. Meethal
B. Obst
Mohamed Khalil
A. Ghantasala
A. Kodakkal
K. Bletzinger
R. Wüchner
AI4CE
23
29
0
17 May 2022
Loss Landscape Engineering via Data Regulation on PINNs
Vignesh Gopakumar
Stanislas Pamela
D. Samaddar
PINN
38
16
0
16 May 2022
AutoKE: An automatic knowledge embedding framework for scientific machine learning
Mengge Du
Yuntian Chen
Dongxiao Zhang
AI4CE
33
11
0
11 May 2022
Physics-informed neural networks for PDE-constrained optimization and control
Jostein Barry-Straume
A. Sarshar
Andrey A. Popov
Adrian Sandu
PINN
AI4CE
29
14
0
06 May 2022
Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks
R. Mojgani
Maciej Balajewicz
P. Hassanzadeh
PINN
33
45
0
05 May 2022
Learning Green's functions associated with time-dependent partial differential equations
N. Boullé
Seick Kim
Tianyi Shi
Alex Townsend
AI4CE
26
25
0
27 Apr 2022
Numerical Computation of Partial Differential Equations by Hidden-Layer Concatenated Extreme Learning Machine
Naxian Ni
S. Dong
29
20
0
24 Apr 2022
Competitive Physics Informed Networks
Qi Zeng
Yash Kothari
Spencer H. Bryngelson
F. Schafer
PINN
19
20
0
23 Apr 2022
Improved Training of Physics-Informed Neural Networks with Model Ensembles
Katsiaryna Haitsiukevich
Alexander Ilin
PINN
36
23
0
11 Apr 2022
Previous
1
2
3
4
5
6
7
Next