ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.13684
  4. Cited By
Faithful or Extractive? On Mitigating the Faithfulness-Abstractiveness
  Trade-off in Abstractive Summarization

Faithful or Extractive? On Mitigating the Faithfulness-Abstractiveness Trade-off in Abstractive Summarization

31 August 2021
Faisal Ladhak
Esin Durmus
He He
Claire Cardie
Kathleen McKeown
ArXivPDFHTML

Papers citing "Faithful or Extractive? On Mitigating the Faithfulness-Abstractiveness Trade-off in Abstractive Summarization"

27 / 27 papers shown
Title
To Point or Not to Point: Understanding How Abstractive Summarizers
  Paraphrase Text
To Point or Not to Point: Understanding How Abstractive Summarizers Paraphrase Text
Matthew Wilber
William Timkey
Marten van Schijndel
84
8
0
03 Jun 2021
Understanding Factuality in Abstractive Summarization with FRANK: A
  Benchmark for Factuality Metrics
Understanding Factuality in Abstractive Summarization with FRANK: A Benchmark for Factuality Metrics
Artidoro Pagnoni
Vidhisha Balachandran
Yulia Tsvetkov
HILM
251
308
0
27 Apr 2021
Improving Faithfulness in Abstractive Summarization with Contrast
  Candidate Generation and Selection
Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection
Sihao Chen
Fan Zhang
Kazoo Sone
Dan Roth
HILM
73
106
0
19 Apr 2021
Annotating and Modeling Fine-grained Factuality in Summarization
Annotating and Modeling Fine-grained Factuality in Summarization
Tanya Goyal
Greg Durrett
HILM
48
154
0
09 Apr 2021
Detecting Hallucinated Content in Conditional Neural Sequence Generation
Detecting Hallucinated Content in Conditional Neural Sequence Generation
Chunting Zhou
Graham Neubig
Jiatao Gu
Mona T. Diab
P. Guzmán
Luke Zettlemoyer
Marjan Ghazvininejad
HILM
76
199
0
05 Nov 2020
GO FIGURE: A Meta Evaluation of Factuality in Summarization
GO FIGURE: A Meta Evaluation of Factuality in Summarization
Saadia Gabriel
Asli Celikyilmaz
Rahul Jha
Yejin Choi
Jianfeng Gao
HILM
253
96
0
24 Oct 2020
Understanding Neural Abstractive Summarization Models via Uncertainty
Understanding Neural Abstractive Summarization Models via Uncertainty
Jiacheng Xu
Shrey Desai
Greg Durrett
UQLM
26
47
0
15 Oct 2020
Evaluating Factuality in Generation with Dependency-level Entailment
Evaluating Factuality in Generation with Dependency-level Entailment
Tanya Goyal
Greg Durrett
82
148
0
12 Oct 2020
WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive
  Summarization
WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization
Faisal Ladhak
Esin Durmus
Claire Cardie
Kathleen McKeown
CVBM
45
198
0
07 Oct 2020
Multi-Fact Correction in Abstractive Text Summarization
Multi-Fact Correction in Abstractive Text Summarization
Yue Dong
Shuohang Wang
Zhe Gan
Yu Cheng
Jackie C.K. Cheung
Jingjing Liu
KELM
HILM
55
118
0
06 Oct 2020
SummEval: Re-evaluating Summarization Evaluation
SummEval: Re-evaluating Summarization Evaluation
Alexander R. Fabbri
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
Dragomir R. Radev
HILM
86
701
0
24 Jul 2020
FEQA: A Question Answering Evaluation Framework for Faithfulness
  Assessment in Abstractive Summarization
FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization
Esin Durmus
He He
Mona T. Diab
HILM
70
390
0
07 May 2020
Improving Truthfulness of Headline Generation
Improving Truthfulness of Headline Generation
Kazuki Matsumaru
Sho Takase
Naoaki Okazaki
HILM
27
49
0
02 May 2020
On Faithfulness and Factuality in Abstractive Summarization
On Faithfulness and Factuality in Abstractive Summarization
Joshua Maynez
Shashi Narayan
Bernd Bohnet
Ryan T. McDonald
HILM
67
1,025
0
02 May 2020
Improved Natural Language Generation via Loss Truncation
Improved Natural Language Generation via Loss Truncation
Daniel Kang
Tatsunori Hashimoto
34
97
0
30 Apr 2020
Asking and Answering Questions to Evaluate the Factual Consistency of
  Summaries
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries
Alex Jinpeng Wang
Kyunghyun Cho
M. Lewis
HILM
63
478
0
08 Apr 2020
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
  Summarization
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
Jingqing Zhang
Yao-Min Zhao
Mohammad Saleh
Peter J. Liu
RALM
3DGS
197
2,029
0
18 Dec 2019
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
  Generation, Translation, and Comprehension
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
M. Lewis
Yinhan Liu
Naman Goyal
Marjan Ghazvininejad
Abdel-rahman Mohamed
Omer Levy
Veselin Stoyanov
Luke Zettlemoyer
AIMat
VLM
133
10,720
0
29 Oct 2019
Evaluating the Factual Consistency of Abstractive Text Summarization
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
HILM
69
739
0
28 Oct 2019
Neural Text Summarization: A Critical Evaluation
Neural Text Summarization: A Critical Evaluation
Wojciech Kry'sciñski
N. Keskar
Bryan McCann
Caiming Xiong
R. Socher
67
363
0
23 Aug 2019
Unified Language Model Pre-training for Natural Language Understanding
  and Generation
Unified Language Model Pre-training for Natural Language Understanding and Generation
Li Dong
Nan Yang
Wenhui Wang
Furu Wei
Xiaodong Liu
Yu Wang
Jianfeng Gao
M. Zhou
H. Hon
ELM
AI4CE
152
1,553
0
08 May 2019
Content Selection in Deep Learning Models of Summarization
Content Selection in Deep Learning Models of Summarization
Chris Kedzie
Kathleen McKeown
Hal Daumé
BDL
MedIm
74
147
0
29 Oct 2018
WikiHow: A Large Scale Text Summarization Dataset
WikiHow: A Large Scale Text Summarization Dataset
Mahnaz Koupaee
William Yang Wang
45
290
0
18 Oct 2018
Improving Abstraction in Text Summarization
Improving Abstraction in Text Summarization
Wojciech Kry'sciñski
Romain Paulus
Caiming Xiong
R. Socher
35
147
0
23 Aug 2018
Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive
  Strategies
Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
Max Grusky
Mor Naaman
Yoav Artzi
74
550
0
30 Apr 2018
Faithful to the Original: Fact Aware Neural Abstractive Summarization
Faithful to the Original: Fact Aware Neural Abstractive Summarization
Ziqiang Cao
Furu Wei
Wenjie Li
Sujian Li
HILM
67
372
0
13 Nov 2017
A Neural Attention Model for Abstractive Sentence Summarization
A Neural Attention Model for Abstractive Sentence Summarization
Alexander M. Rush
S. Chopra
Jason Weston
CVBM
110
2,695
0
02 Sep 2015
1