ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09518
  4. Cited By
MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?

MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?

21 August 2021
Matteo Fabbri
Guillem Brasó
Gianluca Maugeri
Orcun Cetintas
Riccardo Gasparini
Aljosa Osep
Simone Calderara
Laura Leal-Taixe
Rita Cucchiara
    ViT
ArXivPDFHTML

Papers citing "MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?"

16 / 66 papers shown
Title
Playing for Data: Ground Truth from Computer Games
Playing for Data: Ground Truth from Computer Games
Stephan R. Richter
Vibhav Vineet
Stefan Roth
V. Koltun
VLM
103
2,002
0
07 Aug 2016
Virtual Worlds as Proxy for Multi-Object Tracking Analysis
Virtual Worlds as Proxy for Multi-Object Tracking Analysis
Adrien Gaidon
Qiao Wang
Yohann Cabon
E. Vig
56
1,069
0
20 May 2016
Learning by tracking: Siamese CNN for robust target association
Learning by tracking: Siamese CNN for robust target association
Laura Leal-Taixé
Cristian Canton Ferrer
Konrad Schindler
46
426
0
26 Apr 2016
Joint Unsupervised Learning of Deep Representations and Image Clusters
Joint Unsupervised Learning of Deep Representations and Image Clusters
Jianwei Yang
Devi Parikh
Dhruv Batra
SSL
39
814
0
13 Apr 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
669
11,540
0
06 Apr 2016
MOT16: A Benchmark for Multi-Object Tracking
MOT16: A Benchmark for Multi-Object Tracking
Anton Milan
Laura Leal-Taixe
Ian Reid
Stefan Roth
Konrad Schindler
VOT
124
1,788
0
02 Mar 2016
Simple Online and Realtime Tracking
Simple Online and Realtime Tracking
Alex Bewley
Zongyuan Ge
Lionel Ott
F. Ramos
B. Upcroft
VOT
75
3,063
0
02 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.4K
192,638
0
10 Dec 2015
A Large Dataset to Train Convolutional Networks for Disparity, Optical
  Flow, and Scene Flow Estimation
A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation
N. Mayer
Eddy Ilg
Philip Häusser
Philipp Fischer
Daniel Cremers
Alexey Dosovitskiy
Thomas Brox
3DPC
52
2,625
0
07 Dec 2015
SceneNet: Understanding Real World Indoor Scenes With Synthetic Data
SceneNet: Understanding Real World Indoor Scenes With Synthetic Data
Ankur Handa
Viorica Patraucean
Vijay Badrinarayanan
Simon Stent
R. Cipolla
3DPC
3DV
55
231
0
22 Nov 2015
UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and
  Tracking
UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking
Longyin Wen
Dawei Du
Zhaowei Cai
Zhen Lei
Ming-Ching Chang
H. Qi
Jongwoo Lim
Ming-Hsuan Yang
Siwei Lyu
VOT
62
569
0
13 Nov 2015
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
561
36,643
0
08 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
410
61,900
0
04 Jun 2015
FlowNet: Learning Optical Flow with Convolutional Networks
FlowNet: Learning Optical Flow with Convolutional Networks
Philipp Fischer
Alexey Dosovitskiy
Eddy Ilg
Philip Häusser
C. Hazirbas
Vladimir Golkov
Patrick van der Smagt
Daniel Cremers
Thomas Brox
3DPC
249
4,159
0
26 Apr 2015
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.1K
39,383
0
01 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
255
43,290
0
01 May 2014
Previous
12