ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.08052
  4. Cited By
Moser Flow: Divergence-based Generative Modeling on Manifolds

Moser Flow: Divergence-based Generative Modeling on Manifolds

18 August 2021
N. Rozen
Aditya Grover
Maximilian Nickel
Y. Lipman
    DRL
    AI4CE
ArXivPDFHTML

Papers citing "Moser Flow: Divergence-based Generative Modeling on Manifolds"

41 / 41 papers shown
Title
Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Ziqiang Liu
Wei Zhang
Tiejun Li
DiffM
21
0
0
15 May 2025
Riemannian Denoising Diffusion Probabilistic Models
Riemannian Denoising Diffusion Probabilistic Models
Ziqiang Liu
Wei Zhang
Christof Schütte
Tiejun Li
DiffM
76
0
0
07 May 2025
Ergodic Generative Flows
Ergodic Generative Flows
Leo Maxime Brunswic
Mateo Clemente
Rui Heng Yang
Adam Sigal
Amir Rasouli
Yinchuan Li
42
0
0
06 May 2025
Riemannian Neural Geodesic Interpolant
Riemannian Neural Geodesic Interpolant
Jiawen Wu
Bingguang Chen
Yuyi Zhou
Qi Meng
Rongchan Zhu
Zhi-Ming Ma
24
0
0
22 Apr 2025
LocDiffusion: Identifying Locations on Earth by Diffusing in the Hilbert Space
LocDiffusion: Identifying Locations on Earth by Diffusing in the Hilbert Space
Zhangyu Wang
Jielu Zhang
Zhongliang Zhou
Qian Cao
Nemin Wu
...
Lan Mu
Yang Song
Yiqun Xie
Ni Lao
Gengchen Mai
DiffM
36
0
0
23 Mar 2025
Towards Hierarchical Rectified Flow
Towards Hierarchical Rectified Flow
Yichi Zhang
Yici Yan
A. Schwing
Zhizhen Zhao
47
1
0
24 Feb 2025
Mean-Shift Distillation for Diffusion Mode Seeking
Mean-Shift Distillation for Diffusion Mode Seeking
Vikas Thamizharasan
Nikitas Chatzis
Iliyan Georgiev
Matthew Fisher
Difan Liu
Nanxuan Zhao
E. Kalogerakis
Michal Lukac
DiffM
43
0
0
21 Feb 2025
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Video Latent Flow Matching: Optimal Polynomial Projections for Video Interpolation and Extrapolation
Yang Cao
Zhao-quan Song
Chiwun Yang
VGen
46
2
0
01 Feb 2025
Variational Flow Matching for Graph Generation
Variational Flow Matching for Graph Generation
Floor Eijkelboom
Grigory Bartosh
C. A. Naesseth
Max Welling
Jan Willem van de Meent
31
10
0
07 Jun 2024
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
Yuchen Zhu
Tianrong Chen
Lingkai Kong
Evangelos A. Theodorou
Molei Tao
DiffM
40
4
0
25 May 2024
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
A. Bose
Francesco Di Giovanni
41
12
0
23 May 2024
Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow
  Matching on Assignment Manifolds
Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow Matching on Assignment Manifolds
Bastian Boll
Daniel Gonzalez-Alvarado
Christoph Schnörr
DRL
45
4
0
12 Feb 2024
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
Manifold GCN: Diffusion-based Convolutional Neural Network for Manifold-valued Graphs
M. Hanik
Gabriele Steidl
C. V. Tycowicz
GNN
MedIm
36
3
0
25 Jan 2024
Unified framework for diffusion generative models in SO(3): applications
  in computer vision and astrophysics
Unified framework for diffusion generative models in SO(3): applications in computer vision and astrophysics
Yesukhei Jagvaral
F. Lanusse
Rachel Mandelbaum
DiffM
35
5
0
18 Dec 2023
Learning Distributions on Manifolds with Free-form Flows
Learning Distributions on Manifolds with Free-form Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Ullrich Kothe
DRL
AI4CE
29
2
0
15 Dec 2023
Noise in the reverse process improves the approximation capabilities of
  diffusion models
Noise in the reverse process improves the approximation capabilities of diffusion models
Karthik Elamvazhuthi
Samet Oymak
Fabio Pasqualetti
DiffM
10
0
0
13 Dec 2023
Scaling Riemannian Diffusion Models
Scaling Riemannian Diffusion Models
Aaron Lou
Minkai Xu
Stefano Ermon
24
8
0
30 Oct 2023
Riemannian Residual Neural Networks
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
21
10
0
16 Oct 2023
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion
  Processes
Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes
Jaehyeong Jo
Sung Ju Hwang
DiffM
34
9
0
11 Oct 2023
Parallelizing non-linear sequential models over the sequence length
Parallelizing non-linear sequential models over the sequence length
Yi Heng Lim
Qi Zhu
Joshua Selfridge
M. F. Kasim
22
13
0
21 Sep 2023
Simulation-free Schrödinger bridges via score and flow matching
Simulation-free Schrödinger bridges via score and flow matching
Alexander Tong
Nikolay Malkin
Kilian Fatras
Lazar Atanackovic
Yanlei Zhang
G. Huguet
Guy Wolf
Yoshua Bengio
DiffM
OT
36
29
0
07 Jul 2023
Stabilized Neural Differential Equations for Learning Dynamics with
  Explicit Constraints
Stabilized Neural Differential Equations for Learning Dynamics with Explicit Constraints
Alistair J R White
Niki Kilbertus
Maximilian Gelbrecht
Niklas Boers
20
6
0
16 Jun 2023
Error Bounds for Flow Matching Methods
Error Bounds for Flow Matching Methods
Joe Benton
George Deligiannidis
Arnaud Doucet
DiffM
28
31
0
26 May 2023
Manifold Diffusion Fields
Manifold Diffusion Fields
Ahmed A. A. Elhag
Yuyang Wang
J. Susskind
Miguel Angel Bautista
DiffM
AI4CE
36
4
0
24 May 2023
Delving into Discrete Normalizing Flows on SO(3) Manifold for
  Probabilistic Rotation Modeling
Delving into Discrete Normalizing Flows on SO(3) Manifold for Probabilistic Rotation Modeling
Yulin Liu
Haoran Liu
Yingda Yin
Yang Wang
Baoquan Chen
Heru Wang
16
13
0
08 Apr 2023
DIME-Net: Neural Network-Based Dynamic Intrinsic Parameter Rectification
  for Cameras with Optical Image Stabilization System
DIME-Net: Neural Network-Based Dynamic Intrinsic Parameter Rectification for Cameras with Optical Image Stabilization System
Shu-Hao Yeh
Shuangyun Xie
Di Wang
Wei Yan
Dezhen Song
25
1
0
20 Mar 2023
Conformal Generative Modeling on Triangulated Surfaces
Conformal Generative Modeling on Triangulated Surfaces
Victor D. Dorobantu
Charlotte Borcherds
Yisong Yue
25
1
0
17 Mar 2023
Diffusion Probabilistic Fields
Diffusion Probabilistic Fields
Peiye Zhuang
Samira Abnar
Jiatao Gu
Alex Schwing
Joshua M. Susskind
Miguel Angel Bautista
DiffM
22
25
0
01 Mar 2023
Flow Matching on General Geometries
Flow Matching on General Geometries
Ricky T. Q. Chen
Y. Lipman
AI4CE
27
67
0
07 Feb 2023
Improving and generalizing flow-based generative models with minibatch
  optimal transport
Improving and generalizing flow-based generative models with minibatch optimal transport
Alexander Tong
Kilian Fatras
Nikolay Malkin
G. Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Guy Wolf
Yoshua Bengio
OOD
DiffM
OT
39
231
0
01 Feb 2023
Flow Matching for Generative Modeling
Flow Matching for Generative Modeling
Y. Lipman
Ricky T. Q. Chen
Heli Ben-Hamu
Maximilian Nickel
Matt Le
OOD
41
1,046
0
06 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
48
50
0
04 Oct 2022
First Hitting Diffusion Models for Generating Manifold, Graph and
  Categorical Data
First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data
Mao Ye
Lemeng Wu
Qiang Liu
DiffM
15
19
0
02 Sep 2022
Matching Normalizing Flows and Probability Paths on Manifolds
Matching Normalizing Flows and Probability Paths on Manifolds
Heli Ben-Hamu
Samuel N. Cohen
Joey Bose
Brandon Amos
Aditya Grover
Maximilian Nickel
Ricky T. Q. Chen
Y. Lipman
55
39
0
11 Jul 2022
Gradual Domain Adaptation via Normalizing Flows
Gradual Domain Adaptation via Normalizing Flows
Shogo Sagawa
H. Hino
CLL
OOD
22
9
0
23 Jun 2022
Neural Vector Fields for Implicit Surface Representation and Inference
Neural Vector Fields for Implicit Surface Representation and Inference
Edoardo Mello Rella
Ajad Chhatkuli
E. Konukoglu
Luc Van Gool
AI4CE
33
3
0
13 Apr 2022
Riemannian Score-Based Generative Modelling
Riemannian Score-Based Generative Modelling
Valentin De Bortoli
Emile Mathieu
M. Hutchinson
James Thornton
Yee Whye Teh
Arnaud Doucet
DiffM
222
164
0
06 Feb 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs
LyaNet: A Lyapunov Framework for Training Neural ODEs
I. D. Rodriguez
Aaron D. Ames
Yisong Yue
33
49
0
05 Feb 2022
Autoencoding Hyperbolic Representation for Adversarial Generation
Autoencoding Hyperbolic Representation for Adversarial Generation
Eric Qu
Dongmian Zou
GAN
36
4
0
30 Jan 2022
Density estimation on smooth manifolds with normalizing flows
Density estimation on smooth manifolds with normalizing flows
Dimitris Kalatzis
J. Z. Ye
Alison Pouplin
Jesper Wohlert
Søren Hauberg
11
5
0
07 Jun 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
1