ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.11820
  4. Cited By
A Survey of Monte Carlo Methods for Parameter Estimation

A Survey of Monte Carlo Methods for Parameter Estimation

25 July 2021
D. Luengo
Luca Martino
M. Bugallo
Victor Elvira
S. Särkkä
ArXiv (abs)PDFHTML

Papers citing "A Survey of Monte Carlo Methods for Parameter Estimation"

50 / 62 papers shown
Title
Adaptive posterior distributions for uncertainty analysis of covariance matrices in Bayesian inversion problems for multioutput signals
E. Curbelo
Luca Martino
F. Llorente
D. Delgado-Gomez
131
1
0
03 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
165
14
0
03 Jan 2025
Accelerating MCMC Algorithms
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
69
141
0
08 Apr 2018
Air Markov Chain Monte Carlo
Air Markov Chain Monte Carlo
C. Chimisov
Krzysztof Latuszynski
Gareth O. Roberts
69
11
0
28 Jan 2018
A Review of Multiple Try MCMC algorithms for Signal Processing
A Review of Multiple Try MCMC algorithms for Signal Processing
Luca Martino
53
81
0
27 Jan 2018
Parsimonious Adaptive Rejection Sampling
Parsimonious Adaptive Rejection Sampling
Luca Martino
30
11
0
13 Oct 2017
Metropolis Sampling
Metropolis Sampling
Luca Martino
Victor Elvira
67
25
0
15 Apr 2017
Pólya Urn Latent Dirichlet Allocation: a doubly sparse massively
  parallel sampler
Pólya Urn Latent Dirichlet Allocation: a doubly sparse massively parallel sampler
Alexander Terenin
Måns Magnusson
Leif Jonsson
D. Draper
38
18
0
12 Apr 2017
Group Importance Sampling for Particle Filtering and MCMC
Group Importance Sampling for Particle Filtering and MCMC
Luca Martino
Victor Elvira
G. Camps-Valls
146
66
0
10 Apr 2017
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
155
223
0
06 Mar 2017
High-dimensional Filtering using Nested Sequential Monte Carlo
High-dimensional Filtering using Nested Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
75
23
0
29 Dec 2016
The Recycling Gibbs Sampler for Efficient Learning
The Recycling Gibbs Sampler for Efficient Learning
Luca Martino
Victor Elvira
Gustau Camps-Valls
79
30
0
21 Nov 2016
Measuring Sample Quality with Diffusions
Measuring Sample Quality with Diffusions
Jackson Gorham
Andrew B. Duncan
Sandra Jeanne Vollmer
Lester W. Mackey
91
117
0
21 Nov 2016
Cooperative Parallel Particle Filters for online model selection and
  applications to Urban Mobility
Cooperative Parallel Particle Filters for online model selection and applications to Urban Mobility
Luca Martino
Jesse Read
Victor Elvira
F. Louzada
68
131
0
25 Sep 2016
Heretical Multiple Importance Sampling
Heretical Multiple Importance Sampling
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
70
38
0
15 Sep 2016
GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit
  model
GPU-accelerated Gibbs sampling: a case study of the Horseshoe Probit model
Alexander Terenin
Shawfeng Dong
D. Draper
60
40
0
15 Aug 2016
Independent Resampling Sequential Monte Carlo Algorithms
Independent Resampling Sequential Monte Carlo Algorithms
Roland Lamberti
Y. Petetin
F. Desbouvries
F. Septier
37
14
0
19 Jul 2016
Improving Population Monte Carlo: Alternative Weighting and Resampling
  Schemes
Improving Population Monte Carlo: Alternative Weighting and Resampling Schemes
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
74
85
0
10 Jul 2016
Geometrically Tempered Hamiltonian Monte Carlo
Geometrically Tempered Hamiltonian Monte Carlo
A. Nishimura
David B. Dunson
39
22
0
04 Apr 2016
Effective Sample Size for Importance Sampling based on discrepancy
  measures
Effective Sample Size for Importance Sampling based on discrepancy measures
Luca Martino
Victor Elvira
F. Louzada
138
181
0
10 Feb 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
113
486
0
10 Feb 2016
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
Arthur Gretton
BDL
213
328
0
09 Feb 2016
Generalized Multiple Importance Sampling
Generalized Multiple Importance Sampling
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
98
145
0
10 Nov 2015
Statistically efficient thinning of a Markov chain sampler
Statistically efficient thinning of a Markov chain sampler
Art B. Owen
107
54
0
27 Oct 2015
Asynchronous Gibbs Sampling
Asynchronous Gibbs Sampling
Alexander Terenin
Daniel P. Simpson
D. Draper
57
43
0
30 Sep 2015
Parallel Metropolis chains with cooperative adaptation
Parallel Metropolis chains with cooperative adaptation
Luca Martino
Victor Elvira
D. Luengo
F. Louzada
48
4
0
26 Sep 2015
Adaptive Rejection Sampling with fixed number of nodes
Adaptive Rejection Sampling with fixed number of nodes
Luca Martino
F. Louzada
65
12
0
26 Sep 2015
Adaptive, delayed-acceptance MCMC for targets with expensive likelihoods
Adaptive, delayed-acceptance MCMC for targets with expensive likelihoods
Chris Sherlock
Andrew Golightly
D. Henderson
85
55
0
01 Sep 2015
Issues in the Multiple Try Metropolis mixing
Issues in the Multiple Try Metropolis mixing
Luca Martino
F. Louzada
31
23
0
18 Aug 2015
Optimal approximating Markov chains for Bayesian inference
Optimal approximating Markov chains for Bayesian inference
J. Johndrow
Jonathan C. Mattingly
Sayan Mukherjee
David B. Dunson
88
31
0
13 Aug 2015
Orthogonal parallel MCMC methods for sampling and optimization
Orthogonal parallel MCMC methods for sampling and optimization
Luca Martino
Victor Elvira
D. Luengo
J. Corander
F. Louzada
74
74
0
30 Jul 2015
Gradient Importance Sampling
Gradient Importance Sampling
Ingmar Schuster
74
25
0
21 Jul 2015
Parallelizing MCMC with Random Partition Trees
Parallelizing MCMC with Random Partition Trees
Xiangyu Wang
Fangjian Guo
Katherine A. Heller
David B. Dunson
115
76
0
10 Jun 2015
Measuring Sample Quality with Stein's Method
Measuring Sample Quality with Stein's Method
Jackson Gorham
Lester W. Mackey
158
225
0
09 Jun 2015
Efficient Multiple Importance Sampling Estimators
Efficient Multiple Importance Sampling Estimators
Victor Elvira
Luca Martino
D. Luengo
M. Bugallo
82
75
0
20 May 2015
Layered Adaptive Importance Sampling
Layered Adaptive Importance Sampling
Luca Martino
Victor Elvira
D. Luengo
J. Corander
77
108
0
18 May 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
73
279
0
11 May 2015
A proof of uniform convergence over time for a distributed particle
  filter
A proof of uniform convergence over time for a distributed particle filter
Joaquín Míguez
M. A. Vázquez
84
22
0
05 Apr 2015
Stability of Noisy Metropolis-Hastings
Stability of Noisy Metropolis-Hastings
F. Medina-Aguayo
Anthony Lee
Gareth O. Roberts
119
41
0
24 Mar 2015
Nested Sequential Monte Carlo Methods
Nested Sequential Monte Carlo Methods
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
461
84
0
09 Feb 2015
Optimizing The Integrator Step Size for Hamiltonian Monte Carlo
Optimizing The Integrator Step Size for Hamiltonian Monte Carlo
M. Betancourt
Simon Byrne
Mark Girolami
100
77
0
24 Nov 2014
Big Learning with Bayesian Methods
Big Learning with Bayesian Methods
Jun Zhu
Jianfei Chen
Wenbo Hu
Bo Zhang
BDL
471
84
0
24 Nov 2014
Convergence properties of weighted particle islands with application to
  the double bootstrap algorithm
Convergence properties of weighted particle islands with application to the double bootstrap algorithm
P. Del Moral
Eric Moulines
Jimmy Olsson
Christelle Vergé
40
20
0
15 Oct 2014
Combining Particle MCMC with Rao-Blackwellized Monte Carlo Data
  Association for Parameter Estimation in Multiple Target Tracking
Combining Particle MCMC with Rao-Blackwellized Monte Carlo Data Association for Parameter Estimation in Multiple Target Tracking
Juho Kokkala
Simo Särkkä
68
24
0
30 Sep 2014
Firefly Monte Carlo: Exact MCMC with Subsets of Data
Firefly Monte Carlo: Exact MCMC with Subsets of Data
D. Maclaurin
Ryan P. Adams
155
179
0
22 Mar 2014
Particle Gibbs with Ancestor Sampling
Particle Gibbs with Ancestor Sampling
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
128
252
0
03 Jan 2014
Parallelizing MCMC via Weierstrass Sampler
Parallelizing MCMC via Weierstrass Sampler
Xiangyu Wang
David B. Dunson
105
138
0
17 Dec 2013
Asymptotically Exact, Embarrassingly Parallel MCMC
Asymptotically Exact, Embarrassingly Parallel MCMC
Willie Neiswanger
Chong-Jun Wang
Eric Xing
FedML
93
330
0
19 Nov 2013
On the role of interaction in sequential Monte Carlo algorithms
On the role of interaction in sequential Monte Carlo algorithms
N. Whiteley
Anthony Lee
K. Heine
87
69
0
11 Sep 2013
Fully Adaptive Gaussian Mixture Metropolis-Hastings Algorithm
Fully Adaptive Gaussian Mixture Metropolis-Hastings Algorithm
D. Luengo
Luca Martino
113
35
0
01 Dec 2012
12
Next