ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.8502
24
24

Combining Particle MCMC with Rao-Blackwellized Monte Carlo Data Association for Parameter Estimation in Multiple Target Tracking

30 September 2014
Juho Kokkala
Simo Särkkä
ArXivPDFHTML
Abstract

We consider state and parameter estimation in multiple target tracking problems with data association uncertainties and unknown number of targets. We show how the problem can be recast into a conditionally linear Gaussian state-space model with unknown parameters and present an algorithm for computationally efficient inference on the resulting model. The proposed algorithm is based on combining the Rao-Blackwellized Monte Carlo data association algorithm with particle Markov chain Monte Carlo algorithms to jointly estimate both parameters and data associations. Both particle marginal Metropolis-Hastings and particle Gibbs variants of particle MCMC are considered. We demonstrate the performance of the method both using simulated data and in a real-data case study of using multiple target tracking to estimate the brown bear population in Finland.

View on arXiv
Comments on this paper