22
22

Geometrically Tempered Hamiltonian Monte Carlo

Abstract

Hamiltonian Monte Carlo (HMC) has become routinely used for sampling from posterior distributions. Its extension Riemann manifold HMC (RMHMC) modifies the proposal kernel through distortion of local distances by a Riemannian metric. The performance depends critically on the choice of metric, with the Fisher information providing the standard choice. In this article, we propose a new class of metrics aimed at improving HMC's performance on multi-modal target distributions. We refer to the proposed approach as geometrically tempered HMC (GTHMC) due to its connection to other tempering methods. We establish a geometric theory behind RMHMC to motivate GTHMC and characterize its theoretical properties. Moreover, we develop a novel variable step size integrator for simulating Hamiltonian dynamics to improve on the usual St\"{o}rmer-Verlet integrator which suffers from numerical instability in GTHMC settings. We illustrate GTHMC through simulations, demonstrating generality and substantial gains over standard HMC implementations in terms of effective sample sizes.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.