Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.09028
Cited By
v1
v2
v3
v4 (latest)
Structured Stochastic Gradient MCMC
19 July 2021
Antonios Alexos
Alex Boyd
Stephan Mandt
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Structured Stochastic Gradient MCMC"
38 / 38 papers shown
Title
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
165
2
0
31 May 2024
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Gianluigi Silvestri
Emily Fertig
David A. Moore
L. Ambrogioni
BDL
TPM
AI4CE
74
4
0
12 Oct 2021
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
H. Ritter
Martin Kukla
Chen Zhang
Yingzhen Li
UQCV
BDL
71
17
0
30 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
77
387
0
29 Apr 2021
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
88
632
0
14 Jul 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
132
656
0
20 Feb 2020
Automatic structured variational inference
L. Ambrogioni
Kate Lin
Emily Fertig
Sharad Vikram
Max Hinne
Dave Moore
Marcel van Gerven
BDL
75
31
0
03 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
213
1,718
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
565
42,677
0
03 Dec 2019
Partitioned integrators for thermodynamic parameterization of neural networks
Benedict Leimkuhler
Charles Matthews
Tiffany J. Vlaar
ODL
25
22
0
30 Aug 2019
Bayesian Inference for Large Scale Image Classification
Jonathan Heek
Nal Kalchbrenner
UQCV
BDL
127
35
0
09 Aug 2019
Statistical Guarantees for the Robustness of Bayesian Neural Networks
L. Cardelli
Marta Kwiatkowska
Luca Laurenti
Nicola Paoletti
A. Patané
Matthew Wicker
AAML
89
54
0
05 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
76
279
0
11 Feb 2019
Meta-Learning for Stochastic Gradient MCMC
Wenbo Gong
Yingzhen Li
José Miguel Hernández-Lobato
BDL
107
44
0
12 Jun 2018
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
110
352
0
28 Nov 2017
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
75
130
0
25 Nov 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
199
696
0
15 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,928
0
25 Aug 2017
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI
Justin Domke
BDL
68
6
0
20 Jun 2017
Stochastic Gradient MCMC Methods for Hidden Markov Models
Yian Ma
N. Foti
E. Fox
BDL
43
32
0
14 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,877
0
14 Jun 2017
Stochastic Gradient Descent as Approximate Bayesian Inference
Stephan Mandt
Matthew D. Hoffman
David M. Blei
BDL
67
599
0
13 Apr 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
98
1,094
0
16 Aug 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
435
18,361
0
27 May 2016
A Variational Analysis of Stochastic Gradient Algorithms
Stephan Mandt
Matthew D. Hoffman
David M. Blei
68
161
0
08 Feb 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
307
4,817
0
04 Jan 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
102
327
0
23 Dec 2015
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Linear Response Methods for Accurate Covariance Estimates from Mean Field Variational Bayes
Ryan Giordano
Tamara Broderick
Michael I. Jordan
76
84
0
12 Jun 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
322
4,198
0
21 May 2015
Early Stopping is Nonparametric Variational Inference
D. Maclaurin
David Duvenaud
Ryan P. Adams
BDL
89
95
0
06 Apr 2015
Structured Stochastic Variational Inference
Matthew D. Hoffman
David M. Blei
BDL
97
87
0
16 Apr 2014
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
128
913
0
17 Feb 2014
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
150
1,167
0
31 Dec 2013
Variational MCMC
Nando de Freitas
Pedro A. d. F. R. Højen-Sørensen
Michael I. Jordan
Stuart J. Russell
BDL
101
105
0
10 Jan 2013
Variational Inference in Nonconjugate Models
Chong-Jun Wang
David M. Blei
BDL
131
228
0
19 Sep 2012
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
277
2,628
0
29 Jun 2012
Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring
S. Ahn
Anoop Korattikara Balan
Max Welling
79
306
0
27 Jun 2012
1