ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00328
  4. Cited By
End-to-end Compression Towards Machine Vision: Network Architecture
  Design and Optimization

End-to-end Compression Towards Machine Vision: Network Architecture Design and Optimization

1 July 2021
Shurun Wang
Zhao Wang
Shiqi Wang
Yan Ye
ArXivPDFHTML

Papers citing "End-to-end Compression Towards Machine Vision: Network Architecture Design and Optimization"

19 / 19 papers shown
Title
CompressAI: a PyTorch library and evaluation platform for end-to-end
  compression research
CompressAI: a PyTorch library and evaluation platform for end-to-end compression research
Jean Bégaint
Fabien Racapé
Simon Feltman
Akshay Pushparaja
VLM
56
423
0
05 Nov 2020
End-to-End Facial Deep Learning Feature Compression with Teacher-Student
  Enhancement
End-to-End Facial Deep Learning Feature Compression with Teacher-Student Enhancement
Shurun Wang
Wenhan Yang
Shiqi Wang
CVBM
54
7
0
10 Feb 2020
Video Coding for Machines: A Paradigm of Collaborative Compression and
  Intelligent Analytics
Video Coding for Machines: A Paradigm of Collaborative Compression and Intelligent Analytics
Ling-yu Duan
Jiaying Liu
Wenhan Yang
Tiejun Huang
Wen Gao
132
190
0
10 Jan 2020
An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
  Feature and Signal
An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond Feature and Signal
Sifeng Xia
Kunchangtai Liang
Wenhan Yang
Ling-yu Duan
Jiaying Liu
VGen
57
28
0
09 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
389
42,299
0
03 Dec 2019
Joint Autoregressive and Hierarchical Priors for Learned Image
  Compression
Joint Autoregressive and Hierarchical Priors for Learned Image Compression
David C. Minnen
Johannes Ballé
G. Toderici
67
1,269
0
08 Sep 2018
Pelee: A Real-Time Object Detection System on Mobile Devices
Pelee: A Real-Time Object Detection System on Mobile Devices
R. Wang
Xiang Li
Charles X. Ling
ObjD
56
454
0
18 Apr 2018
Towards Image Understanding from Deep Compression without Decoding
Towards Image Understanding from Deep Compression without Decoding
Robert Torfason
Fabian Mentzer
E. Agustsson
Michael Tschannen
Radu Timofte
Luc Van Gool
AI4CE
62
153
0
16 Mar 2018
Compact Descriptors for Video Analysis: the Emerging MPEG Standard
Compact Descriptors for Video Analysis: the Emerging MPEG Standard
Ling-yu Duan
V. Chandrasekhar
Shiqi Wang
Yihang Lou
Jie Lin
Yan Bai
Tiejun Huang
Alex C. Kot
Wen Gao
51
83
0
26 Apr 2017
End-to-end Optimized Image Compression
End-to-end Optimized Image Compression
Johannes Ballé
Valero Laparra
Eero P. Simoncelli
DRL
77
1,705
0
05 Nov 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Density Modeling of Images using a Generalized Normalization
  Transformation
Density Modeling of Images using a Generalized Normalization Transformation
Johannes Ballé
Valero Laparra
Eero P. Simoncelli
41
388
0
19 Nov 2015
Variable Rate Image Compression with Recurrent Neural Networks
Variable Rate Image Compression with Recurrent Neural Networks
G. Toderici
Sean M. O'Malley
S. Hwang
Damien Vincent
David C. Minnen
S. Baluja
Michele Covell
Rahul Sukthankar
69
671
0
19 Nov 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMat
ObjD
478
62,122
0
04 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
149,842
0
22 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
413
43,589
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.5K
100,213
0
04 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
381
43,524
0
01 May 2014
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
541
15,861
0
12 Nov 2013
1