Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.15962
Cited By
v1
v2
v3 (latest)
On the Generative Utility of Cyclic Conditionals
30 June 2021
Chang-Shu Liu
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Generative Utility of Cyclic Conditionals"
38 / 38 papers shown
Title
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
344
6,551
0
26 Nov 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffM
BDL
155
1,466
0
21 Sep 2020
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding
Akira Nakagawa
Keizo Kato
Taiji Suzuki
DRL
64
9
0
30 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
72
915
0
08 Jul 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
58
113
0
20 Jun 2020
FastSpeech 2: Fast and High-Quality End-to-End Text to Speech
Yi Ren
Chenxu Hu
Xu Tan
Tao Qin
Sheng Zhao
Zhou Zhao
Tie-Yan Liu
105
1,401
0
08 Jun 2020
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
72
237
0
12 May 2020
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRL
AI4CE
90
163
0
31 Mar 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
122
49
0
12 Feb 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDa
DiffM
258
3,954
0
12 Jul 2019
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
109
377
0
06 Jun 2019
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
63
381
0
14 Mar 2019
Preventing Posterior Collapse with delta-VAEs
Ali Razavi
Aaron van den Oord
Ben Poole
Oriol Vinyals
DRL
90
171
0
10 Jan 2019
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
53
53
0
26 Dec 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
152
881
0
02 Oct 2018
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
71
494
0
14 Aug 2018
Explorations in Homeomorphic Variational Auto-Encoding
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDL
DRL
99
115
0
12 Jul 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
297
3,138
0
09 Jul 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
59
89
0
29 May 2018
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRL
BDL
112
384
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
92
253
0
15 Mar 2018
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
Murat Kocaoglu
Christopher Snyder
A. Dimakis
S. Vishwanath
GAN
OOD
79
255
0
06 Sep 2017
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
210
1,354
0
19 May 2017
DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
Zili Yi
Hao Zhang
P. Tan
Minglun Gong
GAN
VLM
133
1,941
0
08 Apr 2017
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
Taeksoo Kim
Moonsu Cha
Hyunsoo Kim
Jung Kwon Lee
Jiwon Kim
GAN
OOD
91
1,979
0
15 Mar 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,093
0
16 Aug 2016
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
81
1,314
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
142
0
31 May 2016
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
113
2,364
0
19 Nov 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
318
4,197
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
306
7,005
0
12 Mar 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
109
910
0
17 Feb 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
103
571
0
26 Sep 2013
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
106
540
0
29 May 2013
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OOD
DRL
70
505
0
18 Nov 2012
A Generative Process for Sampling Contractive Auto-Encoders
Salah Rifai
Yoshua Bengio
Yann N. Dauphin
Pascal Vincent
GAN
DRL
87
51
0
27 Jun 2012
On the Identifiability of the Post-Nonlinear Causal Model
Kun Zhang
Aapo Hyvarinen
CML
204
564
0
09 May 2012
1