ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15962
  4. Cited By
On the Generative Utility of Cyclic Conditionals
v1v2v3 (latest)

On the Generative Utility of Cyclic Conditionals

30 June 2021
Chang-Shu Liu
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
ArXiv (abs)PDFHTML

Papers citing "On the Generative Utility of Cyclic Conditionals"

38 / 38 papers shown
Title
Score-Based Generative Modeling through Stochastic Differential
  Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffMSyDa
344
6,551
0
26 Nov 2020
DiffWave: A Versatile Diffusion Model for Audio Synthesis
DiffWave: A Versatile Diffusion Model for Audio Synthesis
Zhifeng Kong
Ming-Yu Liu
Jiaji Huang
Kexin Zhao
Bryan Catanzaro
DiffMBDL
155
1,466
0
21 Sep 2020
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric
  Embedding
Quantitative Understanding of VAE as a Non-linearly Scaled Isometric Embedding
Akira Nakagawa
Keizo Kato
Taiji Suzuki
DRL
64
9
0
30 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
72
915
0
08 Jul 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
  Approximators
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
58
113
0
20 Jun 2020
FastSpeech 2: Fast and High-Quality End-to-End Text to Speech
FastSpeech 2: Fast and High-Quality End-to-End Text to Speech
Yi Ren
Chenxu Hu
Xu Tan
Tao Qin
Sheng Zhao
Zhou Zhao
Tie-Yan Liu
105
1,401
0
08 Jun 2020
Invertible Image Rescaling
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
72
237
0
12 May 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRLAI4CE
90
163
0
31 Mar 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDLDRL
122
49
0
12 Feb 2020
Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang Song
Stefano Ermon
SyDaDiffM
258
3,954
0
12 Jul 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDLTPMDRL
109
377
0
06 Jun 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
63
381
0
14 Mar 2019
Preventing Posterior Collapse with delta-VAEs
Preventing Posterior Collapse with delta-VAEs
Ali Razavi
Aaron van den Oord
Ben Poole
Oriol Vinyals
DRL
90
171
0
10 Jan 2019
Uncertainty Autoencoders: Learning Compressed Representations via
  Variational Information Maximization
Uncertainty Autoencoders: Learning Compressed Representations via Variational Information Maximization
Aditya Grover
Stefano Ermon
53
53
0
26 Dec 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
152
881
0
02 Oct 2018
Analyzing Inverse Problems with Invertible Neural Networks
Analyzing Inverse Problems with Invertible Neural Networks
Lynton Ardizzone
Jakob Kruse
Sebastian J. Wirkert
D. Rahner
E. Pellegrini
R. Klessen
Lena Maier-Hein
Carsten Rother
Ullrich Kothe
71
494
0
14 Aug 2018
Explorations in Homeomorphic Variational Auto-Encoding
Explorations in Homeomorphic Variational Auto-Encoding
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDLDRL
99
115
0
12 Jul 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
297
3,138
0
09 Jul 2018
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Changyou Chen
Ruiyi Zhang
Wenlin Wang
Bai Li
Liqun Chen
59
89
0
29 May 2018
Hyperspherical Variational Auto-Encoders
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRLBDL
112
384
0
03 Apr 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDLDRL
92
253
0
15 Mar 2018
CausalGAN: Learning Causal Implicit Generative Models with Adversarial
  Training
CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training
Murat Kocaoglu
Christopher Snyder
A. Dimakis
S. Vishwanath
GANOOD
79
255
0
06 Sep 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
210
1,354
0
19 May 2017
DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
Zili Yi
Hao Zhang
P. Tan
Minglun Gong
GANVLM
133
1,941
0
08 Apr 2017
Learning to Discover Cross-Domain Relations with Generative Adversarial
  Networks
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
Taeksoo Kim
Moonsu Cha
Hyunsoo Kim
Jung Kwon Lee
Jiwon Kim
GANOOD
91
1,979
0
15 Mar 2017
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
73
1,093
0
16 Aug 2016
Adversarially Learned Inference
Adversarially Learned Inference
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
GAN
81
1,314
0
02 Jun 2016
Asynchrony begets Momentum, with an Application to Deep Learning
Asynchrony begets Momentum, with an Application to Deep Learning
Jeff Donahue
Philipp Krahenbuhl
Stefan Hadjis
Christopher Ré
92
142
0
31 May 2016
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
113
2,364
0
19 Nov 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
318
4,197
0
21 May 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDaDiffM
306
7,005
0
12 Mar 2015
Stochastic Gradient Hamiltonian Monte Carlo
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
109
910
0
17 Feb 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Causal Discovery with Continuous Additive Noise Models
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
103
571
0
26 Sep 2013
Generalized Denoising Auto-Encoders as Generative Models
Generalized Denoising Auto-Encoders as Generative Models
Yoshua Bengio
L. Yao
Guillaume Alain
Pascal Vincent
106
540
0
29 May 2013
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OODDRL
70
505
0
18 Nov 2012
A Generative Process for Sampling Contractive Auto-Encoders
A Generative Process for Sampling Contractive Auto-Encoders
Salah Rifai
Yoshua Bengio
Yann N. Dauphin
Pascal Vincent
GANDRL
87
51
0
27 Jun 2012
On the Identifiability of the Post-Nonlinear Causal Model
On the Identifiability of the Post-Nonlinear Causal Model
Kun Zhang
Aapo Hyvarinen
CML
204
564
0
09 May 2012
1