ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.14947
  4. Cited By
Data augmentation for deep learning based accelerated MRI reconstruction
  with limited data

Data augmentation for deep learning based accelerated MRI reconstruction with limited data

28 June 2021
Zalan Fabian
Reinhard Heckel
Mahdi Soltanolkotabi
    OOD
    MedIm
ArXivPDFHTML

Papers citing "Data augmentation for deep learning based accelerated MRI reconstruction with limited data"

23 / 23 papers shown
Title
Accelerated MRI with Un-trained Neural Networks
Accelerated MRI with Un-trained Neural Networks
Mohammad Zalbagi Darestani
Reinhard Heckel
19
4
0
06 Jul 2020
Differentiable Augmentation for Data-Efficient GAN Training
Differentiable Augmentation for Data-Efficient GAN Training
Shengyu Zhao
Zhijian Liu
Ji Lin
Jun-Yan Zhu
Song Han
72
603
0
18 Jun 2020
Training Generative Adversarial Networks with Limited Data
Training Generative Adversarial Networks with Limited Data
Tero Karras
M. Aittala
Janne Hellsten
S. Laine
J. Lehtinen
Timo Aila
GAN
103
1,869
0
11 Jun 2020
Image Augmentations for GAN Training
Image Augmentations for GAN Training
Zhengli Zhao
Zizhao Zhang
Ting-Li Chen
Sameer Singh
Han Zhang
38
137
0
04 Jun 2020
Deep Learning Techniques for Inverse Problems in Imaging
Deep Learning Techniques for Inverse Problems in Imaging
Greg Ongie
A. Jalal
Christopher A. Metzler
Richard G. Baraniuk
A. Dimakis
Rebecca Willett
38
526
0
12 May 2020
Compressive sensing with un-trained neural networks: Gradient descent
  finds the smoothest approximation
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
Reinhard Heckel
Mahdi Soltanolkotabi
46
81
0
07 May 2020
End-to-End Variational Networks for Accelerated MRI Reconstruction
End-to-End Variational Networks for Accelerated MRI Reconstruction
Anuroop Sriram
Jure Zbontar
Tullie Murrell
Aaron Defazio
C. L. Zitnick
N. Yakubova
Florian Knoll
Patricia M. Johnson
DRL
22
314
0
14 Apr 2020
Invert to Learn to Invert
Invert to Learn to Invert
P. Putzky
Max Welling
21
75
0
25 Nov 2019
Time-Dependent Deep Image Prior for Dynamic MRI
Time-Dependent Deep Image Prior for Dynamic MRI
Mikhail O. Chekanov
Kyong Hwan Jin
Harshit Gupta
Jerome Yerly
M. Stuber
M. Unser
MedIm
45
154
0
03 Oct 2019
SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for
  MR image reconstruction
SANTIS: Sampling-Augmented Neural neTwork with Incoherent Structure for MR image reconstruction
Fang Liu
Lihua Chen
Richard Kijowski
Li Feng
30
58
0
08 Dec 2018
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
fastMRI: An Open Dataset and Benchmarks for Accelerated MRI
Jure Zbontar
Florian Knoll
Anuroop Sriram
Tullie Murrell
Zhengnan Huang
...
Erich Owens
C. L. Zitnick
M. Recht
D. Sodickson
Yvonne W. Lui
OOD
28
836
0
21 Nov 2018
Deep Decoder: Concise Image Representations from Untrained
  Non-convolutional Networks
Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks
Reinhard Heckel
Paul Hand
55
284
0
02 Oct 2018
UNet++: A Nested U-Net Architecture for Medical Image Segmentation
UNet++: A Nested U-Net Architecture for Medical Image Segmentation
Zongwei Zhou
M. R. Siddiquee
Nima Tajbakhsh
Jianming Liang
SSeg
59
6,066
0
18 Jul 2018
Compressed Sensing with Deep Image Prior and Learned Regularization
Compressed Sensing with Deep Image Prior and Learned Regularization
Dave Van Veen
A. Jalal
Mahdi Soltanolkotabi
Eric Price
S. Vishwanath
A. Dimakis
45
181
0
17 Jun 2018
Deep Residual Learning for Accelerated MRI using Magnitude and Phase
  Networks
Deep Residual Learning for Accelerated MRI using Magnitude and Phase Networks
Dongwook Lee
Jaejun Yoo
S. Tak
J. C. Ye
OOD
41
297
0
02 Apr 2018
Deep Image Prior
Deep Image Prior
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
SupR
93
3,128
0
29 Nov 2017
A Bayesian Data Augmentation Approach for Learning Deep Models
A Bayesian Data Augmentation Approach for Learning Deep Models
Toan M. Tran
Trung T. Pham
G. Carneiro
L. Palmer
Ian Reid
46
233
0
29 Oct 2017
Deep learning for undersampled MRI reconstruction
Deep learning for undersampled MRI reconstruction
Chang Min Hyun
Hwa Pyung Kim
S. Lee
Sungchul Lee
J.K. Seo
28
454
0
08 Sep 2017
Framing U-Net via Deep Convolutional Framelets: Application to
  Sparse-view CT
Framing U-Net via Deep Convolutional Framelets: Application to Sparse-view CT
Yoseob Han
J. C. Ye
38
515
0
28 Aug 2017
Smart Augmentation - Learning an Optimal Data Augmentation Strategy
Smart Augmentation - Learning an Optimal Data Augmentation Strategy
Joseph Lemley
S. Bazrafkan
Peter Corcoran
42
373
0
24 Mar 2017
A Deep Cascade of Convolutional Neural Networks for MR Image
  Reconstruction
A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction
Jo Schlemper
Jose Caballero
Joseph V. Hajnal
Anthony N. Price
Daniel Rueckert
70
348
0
01 Mar 2017
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV
3DPC
SSeg
3DH
119
6,483
0
21 Jun 2016
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
930
76,547
0
18 May 2015
1