Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.06607
Cited By
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
11 June 2021
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization"
6 / 56 papers shown
Title
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
Bryan D. He
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
17
41
0
10 Jun 2016
The deterministic information bottleneck
D. Strouse
D. Schwab
15
134
0
01 Apr 2016
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
318
9,418
0
28 May 2015
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
74
961
0
06 Jan 2015
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
64
1,166
0
10 Jan 2013
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
57
604
0
27 Jun 2012
Previous
1
2