ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06607
  4. Cited By
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization

Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization

11 June 2021
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
    OOD
ArXivPDFHTML

Papers citing "Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization"

6 / 56 papers shown
Title
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on
  How Much
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
Bryan D. He
Christopher De Sa
Ioannis Mitliagkas
Christopher Ré
17
41
0
10 Jun 2016
The deterministic information bottleneck
The deterministic information bottleneck
D. Strouse
D. Schwab
15
134
0
01 Apr 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
318
9,418
0
28 May 2015
Causal inference using invariant prediction: identification and
  confidence intervals
Causal inference using invariant prediction: identification and confidence intervals
J. Peters
Peter Buhlmann
N. Meinshausen
OOD
74
961
0
06 Jan 2015
Domain Generalization via Invariant Feature Representation
Domain Generalization via Invariant Feature Representation
Krikamol Muandet
David Balduzzi
Bernhard Schölkopf
OOD
64
1,166
0
10 Jan 2013
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
57
604
0
27 Jun 2012
Previous
12