Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.06607
Cited By
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
11 June 2021
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization"
50 / 56 papers shown
Title
Robust Invariant Representation Learning by Distribution Extrapolation
Kotaro Yoshida
Konstantinos Slavakis
OOD
26
0
0
22 May 2025
Mitigating Spurious Correlations with Causal Logit Perturbation
Xiaoling Zhou
Wei Ye
Rui Xie
Shikun Zhang
CML
57
0
0
21 May 2025
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
45
0
0
20 May 2025
Unsupervised Invariant Risk Minimization
Yotam Norman
Ron Meir
OOD
37
0
0
18 May 2025
Fine-Grained Bias Exploration and Mitigation for Group-Robust Classification
Miaoyun Zhao
Qiang Zhang
C. Li
50
0
0
11 May 2025
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Jiaqi Wang
Yuhang Zhou
Zhixiong Zhang
Qiguang Chen
Yongqiang Chen
James Cheng
OODD
104
1
0
18 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
106
3
0
04 Feb 2025
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
67
2
0
03 Aug 2024
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
88
0
0
01 Jul 2024
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Tianren Zhang
Chujie Zhao
Guanyu Chen
Yizhou Jiang
Feng Chen
OOD
MLT
OODD
137
4
0
05 Jun 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CML
BDL
VLM
56
0
0
24 May 2024
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
135
3
0
17 Jul 2023
Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation
Kilian Fatras
Hiroki Naganuma
Ioannis Mitliagkas
OOD
32
6
0
22 Jun 2022
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
46
96
0
05 Jun 2021
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
64
35
0
25 Feb 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CML
OOD
58
50
0
24 Feb 2021
Model-Based Domain Generalization
Alexander Robey
George J. Pappas
Hamed Hassani
OOD
64
130
0
23 Feb 2021
Linear unit-tests for invariance discovery
Benjamin Aubin
A. Slowik
Martín Arjovsky
Léon Bottou
David Lopez-Paz
OOD
30
31
0
22 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
244
127
0
04 Jan 2021
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness
Sang Michael Xie
Ananya Kumar
Robbie Jones
Fereshte Khani
Tengyu Ma
Percy Liang
OOD
185
62
0
08 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
94
261
0
18 Nov 2020
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
59
79
0
30 Oct 2020
Understanding the Failure Modes of Out-of-Distribution Generalization
Vaishnavh Nagarajan
Anders Andreassen
Behnam Neyshabur
OOD
OODD
33
177
0
29 Oct 2020
Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions
Kartik Ahuja
Karthikeyan Shanmugam
Amit Dhurandhar
21
9
0
28 Oct 2020
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
48
307
0
12 Oct 2020
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
42
180
0
01 Sep 2020
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
54
1,129
0
02 Jul 2020
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
32
29
0
20 Jun 2020
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
69
328
0
12 Jun 2020
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
153
2,023
0
16 Apr 2020
Efficient Domain Generalization via Common-Specific Low-Rank Decomposition
Vihari Piratla
Praneeth Netrapalli
Sunita Sarawagi
OOD
32
217
0
28 Mar 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
57
16
0
27 Mar 2020
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
224
204
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
282
921
0
02 Mar 2020
Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization
Vikas Garg
Adam Kalai
Katrina Ligett
Zhiwei Steven Wu
OOD
26
22
0
13 Feb 2020
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
48
245
0
11 Feb 2020
Domain Generalization Using a Mixture of Multiple Latent Domains
Toshihiko Matsuura
Tatsuya Harada
OOD
53
324
0
18 Nov 2019
Robust Learning with the Hilbert-Schmidt Independence Criterion
D. Greenfeld
Uri Shalit
OOD
30
55
0
01 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
48
578
0
10 Jul 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
144
2,190
0
05 Jul 2019
On Learning Invariant Representation for Domain Adaptation
Haiying Zhao
Rémi Tachet des Combes
Kun Zhang
Geoffrey J. Gordon
OOD
49
157
0
27 Jan 2019
PAC Learning Guarantees Under Covariate Shift
Artidoro Pagnoni
Stefan Gramatovici
Samuel Liu
25
4
0
16 Dec 2018
Recognition in Terra Incognita
Sara Beery
Grant Van Horn
Pietro Perona
52
835
0
13 Jul 2018
Negative Momentum for Improved Game Dynamics
Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Pezeshki
Rémi Le Priol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
AI4CE
38
180
0
12 Jul 2018
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
57
908
0
27 Oct 2017
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
Thorsten Kurth
Jian Zhang
N. Satish
Ioannis Mitliagkas
Evan Racah
...
J. Deslippe
Mikhail Shiryaev
Srinivas Sridharan
P. Prabhat
Pradeep Dubey
19
83
0
17 Aug 2017
Improving Gibbs Sampler Scan Quality with DoGS
Ioannis Mitliagkas
Lester W. Mackey
35
7
0
18 Jul 2017
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
62
90
0
10 Jul 2017
YellowFin and the Art of Momentum Tuning
Jian Zhang
Ioannis Mitliagkas
ODL
37
108
0
12 Jun 2017
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
71
1,697
0
01 Dec 2016
1
2
Next