ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06607
  4. Cited By
Invariance Principle Meets Information Bottleneck for
  Out-of-Distribution Generalization

Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization

11 June 2021
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
    OOD
ArXivPDFHTML

Papers citing "Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization"

50 / 56 papers shown
Title
Robust Invariant Representation Learning by Distribution Extrapolation
Robust Invariant Representation Learning by Distribution Extrapolation
Kotaro Yoshida
Konstantinos Slavakis
OOD
26
0
0
22 May 2025
Mitigating Spurious Correlations with Causal Logit Perturbation
Mitigating Spurious Correlations with Causal Logit Perturbation
Xiaoling Zhou
Wei Ye
Rui Xie
Shikun Zhang
CML
57
0
0
21 May 2025
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Towards Comprehensive and Prerequisite-Free Explainer for Graph Neural Networks
Han Zhang
Yan Wang
Guanfeng Liu
Pengfei Ding
Huaxiong Wang
Kwok-Yan Lam
45
0
0
20 May 2025
Unsupervised Invariant Risk Minimization
Unsupervised Invariant Risk Minimization
Yotam Norman
Ron Meir
OOD
37
0
0
18 May 2025
Fine-Grained Bias Exploration and Mitigation for Group-Robust Classification
Fine-Grained Bias Exploration and Mitigation for Group-Robust Classification
Miaoyun Zhao
Qiang Zhang
C. Li
50
0
0
11 May 2025
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
DivIL: Unveiling and Addressing Over-Invariance for Out-of- Distribution Generalization
Jiaqi Wang
Yuhang Zhou
Zhixiong Zhang
Qiguang Chen
Yongqiang Chen
James Cheng
OODD
104
1
0
18 Feb 2025
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
106
3
0
04 Feb 2025
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Invariant Graph Learning Meets Information Bottleneck for Out-of-Distribution Generalization
Wenyu Mao
Jiancan Wu
Haoyang Liu
Yongduo Sui
Xiang Wang
OOD
67
2
0
03 Aug 2024
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Invariant Correlation of Representation with Label: Enhancing Domain Generalization in Noisy Environments
Gaojie Jin
Ronghui Mu
Xinping Yi
Xiaowei Huang
Lijun Zhang
88
0
0
01 Jul 2024
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Feature contamination: Neural networks learn uncorrelated features and fail to generalize
Tianren Zhang
Chujie Zhao
Guanyu Chen
Yizhou Jiang
Feng Chen
OOD
MLT
OODD
137
4
0
05 Jun 2024
Learning Invariant Causal Mechanism from Vision-Language Models
Learning Invariant Causal Mechanism from Vision-Language Models
Changwen Zheng
Siyu Zhao
Xingyu Zhang
Jiangmeng Li
Changwen Zheng
Jingyao Wang
CML
BDL
VLM
56
0
0
24 May 2024
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
An Empirical Study of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration
Hiroki Naganuma
Ryuichiro Hataya
Kotaro Yoshida
Ioannis Mitliagkas
OODD
135
3
0
17 Jul 2023
Optimal transport meets noisy label robust loss and MixUp regularization
  for domain adaptation
Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation
Kilian Fatras
Hiroki Naganuma
Ioannis Mitliagkas
OOD
32
6
0
22 Jun 2022
Can Subnetwork Structure be the Key to Out-of-Distribution
  Generalization?
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
46
96
0
05 Jun 2021
An Online Learning Approach to Interpolation and Extrapolation in Domain
  Generalization
An Online Learning Approach to Interpolation and Extrapolation in Domain Generalization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
64
35
0
25 Feb 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CML
OOD
58
50
0
24 Feb 2021
Model-Based Domain Generalization
Model-Based Domain Generalization
Alexander Robey
George J. Pappas
Hamed Hassani
OOD
64
130
0
23 Feb 2021
Linear unit-tests for invariance discovery
Linear unit-tests for invariance discovery
Benjamin Aubin
A. Slowik
Martín Arjovsky
Léon Bottou
David Lopez-Paz
OOD
30
31
0
22 Feb 2021
Does Invariant Risk Minimization Capture Invariance?
Does Invariant Risk Minimization Capture Invariance?
Pritish Kamath
Akilesh Tangella
Danica J. Sutherland
Nathan Srebro
OOD
244
127
0
04 Jan 2021
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for
  Out-of-Distribution Robustness
In-N-Out: Pre-Training and Self-Training using Auxiliary Information for Out-of-Distribution Robustness
Sang Michael Xie
Ananya Kumar
Robbie Jones
Fereshte Khani
Tengyu Ma
Percy Liang
OOD
185
62
0
08 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
94
261
0
18 Nov 2020
Empirical or Invariant Risk Minimization? A Sample Complexity
  Perspective
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
59
79
0
30 Oct 2020
Understanding the Failure Modes of Out-of-Distribution Generalization
Understanding the Failure Modes of Out-of-Distribution Generalization
Vaishnavh Nagarajan
Anders Andreassen
Behnam Neyshabur
OOD
OODD
33
177
0
29 Oct 2020
Linear Regression Games: Convergence Guarantees to Approximate
  Out-of-Distribution Solutions
Linear Regression Games: Convergence Guarantees to Approximate Out-of-Distribution Solutions
Kartik Ahuja
Karthikeyan Shanmugam
Amit Dhurandhar
21
9
0
28 Oct 2020
The Risks of Invariant Risk Minimization
The Risks of Invariant Risk Minimization
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
OOD
48
307
0
12 Oct 2020
Learning explanations that are hard to vary
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
42
180
0
01 Sep 2020
In Search of Lost Domain Generalization
In Search of Lost Domain Generalization
Ishaan Gulrajani
David Lopez-Paz
OOD
54
1,129
0
02 Jul 2020
Representation via Representations: Domain Generalization via
  Adversarially Learned Invariant Representations
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
32
29
0
20 Jun 2020
Domain Generalization using Causal Matching
Domain Generalization using Causal Matching
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
69
328
0
12 Jun 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
153
2,023
0
16 Apr 2020
Efficient Domain Generalization via Common-Specific Low-Rank
  Decomposition
Efficient Domain Generalization via Common-Specific Low-Rank Decomposition
Vihari Piratla
Praneeth Netrapalli
Sunita Sarawagi
OOD
32
217
0
28 Mar 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic
  Objectives in Deep Learning
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
57
16
0
27 Mar 2020
Invariant Rationalization
Invariant Rationalization
Shiyu Chang
Yang Zhang
Mo Yu
Tommi Jaakkola
224
204
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
282
921
0
02 Mar 2020
Learn to Expect the Unexpected: Probably Approximately Correct Domain
  Generalization
Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization
Vikas Garg
Adam Kalai
Katrina Ligett
Zhiwei Steven Wu
OOD
26
22
0
13 Feb 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
48
245
0
11 Feb 2020
Domain Generalization Using a Mixture of Multiple Latent Domains
Domain Generalization Using a Mixture of Multiple Latent Domains
Toshihiko Matsuura
Tatsuya Harada
OOD
53
324
0
18 Nov 2019
Robust Learning with the Hilbert-Schmidt Independence Criterion
Robust Learning with the Hilbert-Schmidt Independence Criterion
D. Greenfeld
Uri Shalit
OOD
30
55
0
01 Oct 2019
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Variational Autoencoders and Nonlinear ICA: A Unifying Framework
Ilyes Khemakhem
Diederik P. Kingma
Ricardo Pio Monti
Aapo Hyvarinen
OOD
48
578
0
10 Jul 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
144
2,190
0
05 Jul 2019
On Learning Invariant Representation for Domain Adaptation
On Learning Invariant Representation for Domain Adaptation
Haiying Zhao
Rémi Tachet des Combes
Kun Zhang
Geoffrey J. Gordon
OOD
49
157
0
27 Jan 2019
PAC Learning Guarantees Under Covariate Shift
PAC Learning Guarantees Under Covariate Shift
Artidoro Pagnoni
Stefan Gramatovici
Samuel Liu
25
4
0
16 Dec 2018
Recognition in Terra Incognita
Recognition in Terra Incognita
Sara Beery
Grant Van Horn
Pietro Perona
52
835
0
13 Jul 2018
Negative Momentum for Improved Game Dynamics
Negative Momentum for Improved Game Dynamics
Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Pezeshki
Rémi Le Priol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
AI4CE
38
180
0
12 Jul 2018
The Implicit Bias of Gradient Descent on Separable Data
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
57
908
0
27 Oct 2017
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for
  Scientific Data
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
Thorsten Kurth
Jian Zhang
N. Satish
Ioannis Mitliagkas
Evan Racah
...
J. Deslippe
Mikhail Shiryaev
Srinivas Sridharan
P. Prabhat
Pradeep Dubey
19
83
0
17 Aug 2017
Improving Gibbs Sampler Scan Quality with DoGS
Improving Gibbs Sampler Scan Quality with DoGS
Ioannis Mitliagkas
Lester W. Mackey
35
7
0
18 Jul 2017
Accelerated Stochastic Power Iteration
Accelerated Stochastic Power Iteration
Christopher De Sa
Bryan D. He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
62
90
0
10 Jul 2017
YellowFin and the Art of Momentum Tuning
YellowFin and the Art of Momentum Tuning
Jian Zhang
Ioannis Mitliagkas
ODL
37
108
0
12 Jun 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
71
1,697
0
01 Dec 2016
12
Next