Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.06596
Cited By
Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect
11 June 2021
Lorenzo Noci
Kevin Roth
Gregor Bachmann
Sebastian Nowozin
Thomas Hofmann
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentangling the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior Effect"
18 / 18 papers shown
Title
Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo
Hyunsu Kim
G. Nam
Chulhee Yun
Hongseok Yang
Juho Lee
BDL
UQCV
57
0
0
02 Mar 2025
Evaluating Bayesian deep learning for radio galaxy classification
Devina Mohan
Anna M. M. Scaife
UQCV
BDL
46
1
0
28 May 2024
Can a Confident Prior Replace a Cold Posterior?
Martin Marek
Brooks Paige
Pavel Izmailov
UQCV
BDL
35
4
0
02 Mar 2024
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
37
22
0
27 Feb 2024
If there is no underfitting, there is no Cold Posterior Effect
Yijie Zhang
Yi-Shan Wu
Luis A. Ortega
A. Masegosa
UQCV
23
1
0
02 Oct 2023
The fine print on tempered posteriors
Konstantinos Pitas
Julyan Arbel
30
1
0
11 Sep 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSL
UQCV
BDL
40
9
0
04 Apr 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCV
OOD
AI4CE
29
6
0
10 Mar 2023
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
16
52
0
11 Nov 2022
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
UQCV
18
5
0
14 Oct 2022
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
13
6
0
08 Jul 2022
Robustness to corruption in pre-trained Bayesian neural networks
Xi Wang
Laurence Aitchison
OOD
UQCV
14
4
0
24 Jun 2022
Cold Posteriors through PAC-Bayes
Konstantinos Pitas
Julyan Arbel
23
5
0
22 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
80
8
0
27 May 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
21
48
0
30 Mar 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
26
12
0
22 Feb 2022
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
21
37
0
10 Jun 2021
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
228
4,460
0
23 Jan 2020
1