ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.04018
  4. Cited By
Intrinsic Dimension Estimation Using Wasserstein Distances

Intrinsic Dimension Estimation Using Wasserstein Distances

8 June 2021
Adam Block
Zeyu Jia
Yury Polyanskiy
Alexander Rakhlin
ArXivPDFHTML

Papers citing "Intrinsic Dimension Estimation Using Wasserstein Distances"

19 / 19 papers shown
Title
Deep Generative Models: Complexity, Dimensionality, and Approximation
Deep Generative Models: Complexity, Dimensionality, and Approximation
Kevin Wang
Hongqian Niu
Yixin Wang
Didong Li
DRL
41
0
0
01 Apr 2025
Is Smoothness the Key to Robustness? A Comparison of Attention and
  Convolution Models Using a Novel Metric
Is Smoothness the Key to Robustness? A Comparison of Attention and Convolution Models Using a Novel Metric
Baiyuan Chen
MLT
28
0
0
23 Oct 2024
Integrating Natural Language Prompting Tasks in Introductory Programming
  Courses
Integrating Natural Language Prompting Tasks in Introductory Programming Courses
Chris Kerslake
Paul Denny
David H Smith IV
James Prather
Juho Leinonen
Andrew Luxton-Reilly
Stephen MacNeil
34
1
0
04 Oct 2024
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
57
0
0
13 Aug 2024
Statistical inference of convex order by Wasserstein projection
Statistical inference of convex order by Wasserstein projection
Jakwang Kim
Young-Heon Kim
Yuanlong Ruan
Andrew Warren
39
2
0
05 Jun 2024
Beyond the noise: intrinsic dimension estimation with optimal
  neighbourhood identification
Beyond the noise: intrinsic dimension estimation with optimal neighbourhood identification
A. Di Noia
Iuri Macocco
Aldo Glielmo
A. Laio
Antonietta Mira
48
3
0
24 May 2024
Generative adversarial learning with optimal input dimension and its
  adaptive generator architecture
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
42
0
0
06 May 2024
Bayesian one- and two-sided inference on the local effective dimension
Bayesian one- and two-sided inference on the local effective dimension
Eduard Belitser
14
0
0
29 Jan 2024
Manifold learning: what, how, and why
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
17
55
0
07 Nov 2023
Sample Complexity Bounds for Estimating Probability Divergences under
  Invariances
Sample Complexity Bounds for Estimating Probability Divergences under Invariances
B. Tahmasebi
Stefanie Jegelka
54
6
0
06 Nov 2023
CA-PCA: Manifold Dimension Estimation, Adapted for Curvature
CA-PCA: Manifold Dimension Estimation, Adapted for Curvature
Anna C. Gilbert
Kevin OÑeill
22
0
0
23 Sep 2023
Manifold Regularization for Memory-Efficient Training of Deep Neural
  Networks
Manifold Regularization for Memory-Efficient Training of Deep Neural Networks
Shadi Sartipi
Edgar A. Bernal
22
0
0
26 May 2023
A statistical framework for analyzing shape in a time series of random
  geometric objects
A statistical framework for analyzing shape in a time series of random geometric objects
Anne van Delft
Andrew J. Blumberg
15
2
0
04 Apr 2023
Data-Copying in Generative Models: A Formal Framework
Data-Copying in Generative Models: A Formal Framework
Robi Bhattacharjee
S. Dasgupta
Kamalika Chaudhuri
TDI
20
6
0
25 Feb 2023
Relating Regularization and Generalization through the Intrinsic
  Dimension of Activations
Relating Regularization and Generalization through the Intrinsic Dimension of Activations
Bradley Brown
Jordan Juravsky
Anthony L. Caterini
G. Loaiza-Ganem
33
3
0
23 Nov 2022
Discovering Conservation Laws using Optimal Transport and Manifold
  Learning
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
27
17
0
31 Aug 2022
Statistical guarantees for generative models without domination
Statistical guarantees for generative models without domination
Nicolas Schreuder
Victor-Emmanuel Brunel
A. Dalalyan
GAN
65
34
0
19 Oct 2020
Minimax Rates for Estimating the Dimension of a Manifold
Minimax Rates for Estimating the Dimension of a Manifold
Jisu Kim
Alessandro Rinaldo
Larry A. Wasserman
166
24
0
03 May 2016
Adaptive Metric Dimensionality Reduction
Adaptive Metric Dimensionality Reduction
Lee-Ad Gottlieb
A. Kontorovich
Robert Krauthgamer
58
38
0
12 Feb 2013
1