Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.04018
Cited By
Intrinsic Dimension Estimation Using Wasserstein Distances
8 June 2021
Adam Block
Zeyu Jia
Yury Polyanskiy
Alexander Rakhlin
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Intrinsic Dimension Estimation Using Wasserstein Distances"
19 / 19 papers shown
Title
Deep Generative Models: Complexity, Dimensionality, and Approximation
Kevin Wang
Hongqian Niu
Yixin Wang
Didong Li
DRL
41
0
0
01 Apr 2025
Is Smoothness the Key to Robustness? A Comparison of Attention and Convolution Models Using a Novel Metric
Baiyuan Chen
MLT
28
0
0
23 Oct 2024
Integrating Natural Language Prompting Tasks in Introductory Programming Courses
Chris Kerslake
Paul Denny
David H Smith IV
James Prather
Juho Leinonen
Andrew Luxton-Reilly
Stephen MacNeil
31
1
0
04 Oct 2024
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
57
0
0
13 Aug 2024
Statistical inference of convex order by Wasserstein projection
Jakwang Kim
Young-Heon Kim
Yuanlong Ruan
Andrew Warren
39
2
0
05 Jun 2024
Beyond the noise: intrinsic dimension estimation with optimal neighbourhood identification
A. Di Noia
Iuri Macocco
Aldo Glielmo
A. Laio
Antonietta Mira
48
3
0
24 May 2024
Generative adversarial learning with optimal input dimension and its adaptive generator architecture
Zhiyao Tan
Ling Zhou
Huazhen Lin
GAN
42
0
0
06 May 2024
Bayesian one- and two-sided inference on the local effective dimension
Eduard Belitser
14
0
0
29 Jan 2024
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
17
55
0
07 Nov 2023
Sample Complexity Bounds for Estimating Probability Divergences under Invariances
B. Tahmasebi
Stefanie Jegelka
54
6
0
06 Nov 2023
CA-PCA: Manifold Dimension Estimation, Adapted for Curvature
Anna C. Gilbert
Kevin OÑeill
22
0
0
23 Sep 2023
Manifold Regularization for Memory-Efficient Training of Deep Neural Networks
Shadi Sartipi
Edgar A. Bernal
22
0
0
26 May 2023
A statistical framework for analyzing shape in a time series of random geometric objects
Anne van Delft
Andrew J. Blumberg
13
2
0
04 Apr 2023
Data-Copying in Generative Models: A Formal Framework
Robi Bhattacharjee
S. Dasgupta
Kamalika Chaudhuri
TDI
20
6
0
25 Feb 2023
Relating Regularization and Generalization through the Intrinsic Dimension of Activations
Bradley Brown
Jordan Juravsky
Anthony L. Caterini
G. Loaiza-Ganem
33
3
0
23 Nov 2022
Discovering Conservation Laws using Optimal Transport and Manifold Learning
Peter Y. Lu
Rumen Dangovski
M. Soljavcić
27
17
0
31 Aug 2022
Statistical guarantees for generative models without domination
Nicolas Schreuder
Victor-Emmanuel Brunel
A. Dalalyan
GAN
65
34
0
19 Oct 2020
Minimax Rates for Estimating the Dimension of a Manifold
Jisu Kim
Alessandro Rinaldo
Larry A. Wasserman
166
24
0
03 May 2016
Adaptive Metric Dimensionality Reduction
Lee-Ad Gottlieb
A. Kontorovich
Robert Krauthgamer
56
38
0
12 Feb 2013
1