Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.03904
Cited By
When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting
7 June 2021
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting"
21 / 21 papers shown
Title
Steering a Historical Disease Forecasting Model Under a Pandemic: Case of Flu and COVID-19
Alexander Rodríguez
Nikhil Muralidhar
B. Adhikari
Anika Tabassum
Naren Ramakrishnan
B. Prakash
LLMSV
24
27
0
23 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
83
106
0
24 Aug 2020
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian
Ahmed Alaa
M. Schaar
46
33
0
13 May 2020
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
298
10,591
0
17 Feb 2020
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
66
38
0
17 Oct 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
56
77
0
19 Jun 2019
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
136
110
0
15 May 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
72
275
0
11 Feb 2019
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
88
440
0
17 Jan 2019
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
81
514
0
04 Jul 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
166
631
0
01 Jul 2018
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
237
5,812
0
14 Jun 2017
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
622
130,942
0
12 Jun 2017
Bayesian Recurrent Neural Networks
Meire Fortunato
Charles Blundell
Oriol Vinyals
BDL
53
184
0
10 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
141
459
0
06 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
628
5,798
0
05 Dec 2016
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
273
5,360
0
03 Nov 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
79
325
0
23 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
614
9,290
0
06 Jun 2015
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
499
27,263
0
01 Sep 2014
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
808
23,310
0
03 Jun 2014
1