ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03904
  4. Cited By
When in Doubt: Neural Non-Parametric Uncertainty Quantification for
  Epidemic Forecasting

When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting

7 June 2021
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
    AI4TS
    BDL
ArXivPDFHTML

Papers citing "When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting"

21 / 21 papers shown
Title
Steering a Historical Disease Forecasting Model Under a Pandemic: Case
  of Flu and COVID-19
Steering a Historical Disease Forecasting Model Under a Pandemic: Case of Flu and COVID-19
Alexander Rodríguez
Nikhil Muralidhar
B. Adhikari
Anika Tabassum
Naren Ramakrishnan
B. Prakash
LLMSV
24
27
0
23 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
83
106
0
24 Aug 2020
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
  Policy Assessment using Compartmental Gaussian Processes
When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian
Ahmed Alaa
M. Schaar
46
33
0
13 May 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
298
10,591
0
17 Feb 2020
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
66
38
0
17 Oct 2019
The Functional Neural Process
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
56
77
0
19 Jun 2019
Distribution Calibration for Regression
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
136
110
0
15 May 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
72
275
0
11 Feb 2019
Attentive Neural Processes
Attentive Neural Processes
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
88
440
0
17 Jan 2019
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
81
514
0
04 Jul 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDL
UQCV
166
631
0
01 Jul 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
237
5,812
0
14 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
622
130,942
0
12 Jun 2017
Bayesian Recurrent Neural Networks
Bayesian Recurrent Neural Networks
Meire Fortunato
Charles Blundell
Oriol Vinyals
BDL
53
184
0
10 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
141
459
0
06 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
628
5,798
0
05 Dec 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
273
5,360
0
03 Nov 2016
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural
  Networks
Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks
Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
ODL
BDL
79
325
0
23 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
614
9,290
0
06 Jun 2015
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
499
27,263
0
01 Sep 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
808
23,310
0
03 Jun 2014
1