ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03904
  4. Cited By
When in Doubt: Neural Non-Parametric Uncertainty Quantification for
  Epidemic Forecasting

When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting

7 June 2021
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
    AI4TS
    BDL
ArXivPDFHTML

Papers citing "When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting"

6 / 6 papers shown
Title
When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
30
5
0
17 Oct 2023
End-to-End Stochastic Optimization with Energy-Based Model
End-to-End Stochastic Optimization with Energy-Based Model
Lingkai Kong
Jiaming Cui
Yuchen Zhuang
Rui Feng
B. Prakash
Chao Zhang
13
16
0
25 Nov 2022
Data-Centric Epidemic Forecasting: A Survey
Data-Centric Epidemic Forecasting: A Survey
Alexander Rodríguez
Harshavardhan Kamarthi
Pulak Agarwal
Javen Ho
Mira Patel
Suchet Sapre
B. Prakash
OOD
26
18
0
19 Jul 2022
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
44
103
0
24 Aug 2020
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1