ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03477
  4. Cited By
BayesIMP: Uncertainty Quantification for Causal Data Fusion

BayesIMP: Uncertainty Quantification for Causal Data Fusion

7 June 2021
Siu Lun Chau
Jean-François Ton
Javier I. González
Yee Whye Teh
Dino Sejdinovic
    CML
ArXivPDFHTML

Papers citing "BayesIMP: Uncertainty Quantification for Causal Data Fusion"

18 / 18 papers shown
Title
Kernel Quantile Embeddings and Associated Probability Metrics
Kernel Quantile Embeddings and Associated Probability Metrics
Masha Naslidnyk
Siu Lun Chau
F. Briol
Krikamol Muandet
70
0
0
26 May 2025
Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Computing Exact Shapley Values in Polynomial Time for Product-Kernel Methods
Majid Mohammadi
Siu Lun Chau
Krikamol Muandet
FAtt
170
0
0
22 May 2025
Integral Imprecise Probability Metrics
Integral Imprecise Probability Metrics
Siu Lun Chau
Michele Caprio
Krikamol Muandet
86
0
0
22 May 2025
Kernel-based estimators for functional causal effects
Kernel-based estimators for functional causal effects
Yordan P. Raykov
Hengrui Luo
Justin Strait
Wasiur R. KhudaBukhsh
CML
196
0
0
06 Mar 2025
Deconditional Downscaling with Gaussian Processes
Deconditional Downscaling with Gaussian Processes
Siu Lun Chau
S. Bouabid
Dino Sejdinovic
BDL
59
22
0
27 May 2021
Multi-task Causal Learning with Gaussian Processes
Multi-task Causal Learning with Gaussian Processes
Virginia Aglietti
Theodoros Damoulas
Mauricio A. Alvarez
Javier I. González
CML
47
18
0
27 Sep 2020
Causal Bayesian Optimization
Causal Bayesian Optimization
Virginia Aglietti
Xiaoyu Lu
Andrei Paleyes
Javier Gonz' alez
CML
30
49
0
24 May 2020
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction
  to Concepts and Methods
Aleatoric and Epistemic Uncertainty in Machine Learning: An Introduction to Concepts and Methods
Eyke Hüllermeier
Willem Waegeman
PER
UD
222
1,410
0
21 Oct 2019
Noise Contrastive Meta-Learning for Conditional Density Estimation using
  Kernel Mean Embeddings
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings
Jean-François Ton
Lucian Chan
Yee Whye Teh
Dino Sejdinovic
43
13
0
05 Jun 2019
Kernel Instrumental Variable Regression
Kernel Instrumental Variable Regression
Rahul Singh
M. Sahani
Arthur Gretton
87
174
0
01 Jun 2019
Hyperparameter Learning for Conditional Kernel Mean Embeddings with
  Rademacher Complexity Bounds
Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds
Kelvin Hsu
Richard Nock
F. Ramos
BDL
25
5
0
01 Sep 2018
Counterfactual Mean Embeddings
Counterfactual Mean Embeddings
Krikamol Muandet
Motonobu Kanagawa
Sorawit Saengkyongam
S. Marukatat
CML
OffRL
82
40
0
22 May 2018
Causal Inference via Kernel Deviance Measures
Causal Inference via Kernel Deviance Measures
Jovana Mitrović
Dino Sejdinovic
Yee Whye Teh
CML
43
62
0
12 Apr 2018
Bayesian Approaches to Distribution Regression
Bayesian Approaches to Distribution Regression
H. Law
Danica J. Sutherland
Dino Sejdinovic
Seth Flaxman
OOD
UQCV
BDL
70
37
0
11 May 2017
Large-Scale Kernel Methods for Independence Testing
Large-Scale Kernel Methods for Independence Testing
Qinyi Zhang
Sarah Filippi
Arthur Gretton
Dino Sejdinovic
103
132
0
25 Jun 2016
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
104
64
0
31 May 2016
Bayesian Learning of Kernel Embeddings
Bayesian Learning of Kernel Embeddings
Seth Flaxman
Dino Sejdinovic
John P. Cunningham
Sarah Filippi
BDL
52
44
0
07 Mar 2016
Kernel Bayes' rule
Kernel Bayes' rule
Kenji Fukumizu
Le Song
Arthur Gretton
80
60
0
29 Sep 2010
1