ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.16156
32
0

Integral Imprecise Probability Metrics

22 May 2025
Siu Lun Chau
Michele Caprio
Krikamol Muandet
ArXivPDFHTML
Abstract

Quantifying differences between probability distributions is fundamental to statistics and machine learning, primarily for comparing statistical uncertainty. In contrast, epistemic uncertainty (EU) -- due to incomplete knowledge -- requires richer representations than those offered by classical probability. Imprecise probability (IP) theory offers such models, capturing ambiguity and partial belief. This has driven growing interest in imprecise probabilistic machine learning (IPML), where inference and decision-making rely on broader uncertainty models -- highlighting the need for metrics beyond classical probability. This work introduces the Integral Imprecise Probability Metric (IIPM) framework, a Choquet integral-based generalisation of classical Integral Probability Metric (IPM) to the setting of capacities -- a broad class of IP models encompassing many existing ones, including lower probabilities, probability intervals, belief functions, and more. Theoretically, we establish conditions under which IIPM serves as a valid metric and metrises a form of weak convergence of capacities. Practically, IIPM not only enables comparison across different IP models but also supports the quantification of epistemic uncertainty within a single IP model. In particular, by comparing an IP model with its conjugate, IIPM gives rise to a new class of EU measures -- Maximum Mean Imprecision -- which satisfy key axiomatic properties proposed in the Uncertainty Quantification literature. We validate MMI through selective classification experiments, demonstrating strong empirical performance against established EU measures, and outperforming them when classical methods struggle to scale to a large number of classes. Our work advances both theory and practice in IPML, offering a principled framework for comparing and quantifying epistemic uncertainty under imprecision.

View on arXiv
@article{chau2025_2505.16156,
  title={ Integral Imprecise Probability Metrics },
  author={ Siu Lun Chau and Michele Caprio and Krikamol Muandet },
  journal={arXiv preprint arXiv:2505.16156},
  year={ 2025 }
}
Comments on this paper