Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2106.02206
Cited By
Stochastic Iterative Graph Matching
4 June 2021
Linfeng Liu
M. C. Hughes
S. Hassoun
Liping Liu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Iterative Graph Matching"
22 / 22 papers shown
Title
Iterative Amortized Policy Optimization
Joseph Marino
Alexandre Piché
Alessandro Davide Ialongo
Yisong Yue
OffRL
89
21
0
20 Oct 2020
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
53
85
0
15 Jun 2020
Deep Graph Matching via Blackbox Differentiation of Combinatorial Solvers
Michal Rolínek
Paul Swoboda
Dominik Zietlow
Anselm Paulus
Vít Musil
Georg Martius
36
113
0
25 Mar 2020
IMRAM: Iterative Matching with Recurrent Attention Memory for Cross-Modal Image-Text Retrieval
Hui Chen
Guiguang Ding
Xudong Liu
Zijia Lin
Ji Liu
Jungong Han
45
319
0
08 Mar 2020
Deep Graph Matching Consensus
Matthias Fey
J. E. Lenssen
Christopher Morris
Jonathan Masci
Nils M. Kriege
50
210
0
27 Jan 2020
SPair-71k: A Large-scale Benchmark for Semantic Correspondence
Juhong Min
Jongmin Lee
Jean Ponce
Minsu Cho
39
129
0
28 Aug 2019
Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network
Kun Xu
Liwei Wang
Mo Yu
Yansong Feng
Yan Song
Zhiguo Wang
Dong Yu
54
236
0
28 May 2019
Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching
Hongteng Xu
Dixin Luo
Lawrence Carin
42
192
0
18 May 2019
Learning Combinatorial Embedding Networks for Deep Graph Matching
Runzhong Wang
Junchi Yan
Xiaokang Yang
32
236
0
01 Apr 2019
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
312
8,441
0
03 Jan 2019
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
148
7,554
0
01 Oct 2018
Iterative Amortized Inference
Joseph Marino
Yisong Yue
Stephan Mandt
BDL
DRL
48
166
0
24 Jul 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
66
267
0
23 Feb 2018
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
Matthias Fey
J. E. Lenssen
F. Weichert
H. Müller
3DPC
102
440
0
24 Nov 2017
Reparameterizing the Birkhoff Polytope for Variational Permutation Inference
Scott W. Linderman
Gonzalo E. Mena
H. Cooper
Liam Paninski
John P. Cunningham
52
50
0
26 Oct 2017
On the challenges of learning with inference networks on sparse, high-dimensional data
Rahul G. Krishnan
Dawen Liang
Matthew Hoffman
CML
BDL
53
85
0
17 Oct 2017
Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull
Thomas Kipf
Peter Bloem
Rianne van den Berg
Ivan Titov
Max Welling
GNN
142
4,772
0
17 Mar 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
111
2,523
0
02 Nov 2016
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
82
2,000
0
14 Jun 2016
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
808
149,474
0
22 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
928
99,991
0
04 Sep 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
360
16,962
0
20 Dec 2013
1