Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2105.13493
Cited By
Efficient and Accurate Gradients for Neural SDEs
27 May 2021
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient and Accurate Gradients for Neural SDEs"
49 / 49 papers shown
Title
Efficient Training of Neural SDEs Using Stochastic Optimal Control
Rembert Daems
Manfred Opper
Guillaume Crevecoeur
Tolga Birdal
40
0
0
22 May 2025
A Reversible Solver for Diffusion SDEs
Zander W. Blasingame
Chen Liu
DiffM
90
0
0
12 Feb 2025
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences and faster training
Julius Berner
Lorenz Richter
Marcin Sendera
Jarrid Rector-Brooks
Nikolay Malkin
OffRL
95
8
0
10 Jan 2025
Trajectory Flow Matching with Applications to Clinical Time Series Modeling
Xi Zhang
Yuan Pu
Yuki Kawamura
Andrew Loza
Yoshua Bengio
Dennis L. Shung
Alexander Tong
OOD
AI4TS
MedIm
70
7
0
28 Oct 2024
Efficient, Accurate and Stable Gradients for Neural ODEs
Sam McCallum
James Foster
70
5
0
15 Oct 2024
AdjointDEIS: Efficient Gradients for Diffusion Models
Zander W. Blasingame
Chen Liu
DiffM
83
5
0
23 May 2024
Scaling ResNets in the Large-depth Regime
Pierre Marion
Adeline Fermanian
Gérard Biau
Jean-Philippe Vert
61
16
0
14 Jun 2022
SigGPDE: Scaling Sparse Gaussian Processes on Sequential Data
M. Lemercier
C. Salvi
Thomas Cass
Edwin V. Bonilla
Theodoros Damoulas
Terry Lyons
47
25
0
10 May 2021
Neural ODE Processes
Alexander Norcliffe
Cristian Bodnar
Ben Day
Jacob Moss
Pietro Lio
BDL
AI4TS
58
64
0
23 Mar 2021
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
53
58
0
15 Feb 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
52
48
0
12 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
57
52
0
09 Feb 2021
Neural SDEs as Infinite-Dimensional GANs
Patrick Kidger
James Foster
Xuechen Li
Harald Oberhauser
Terry Lyons
DiffM
32
151
0
06 Feb 2021
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
302
6,444
0
26 Nov 2020
Neural Rough Differential Equations for Long Time Series
James Morrill
C. Salvi
Patrick Kidger
James Foster
Terry Lyons
AI4TS
66
132
0
17 Sep 2020
SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates
Lingkai Kong
Jimeng Sun
Chao Zhang
UQCV
86
106
0
24 Aug 2020
Robust pricing and hedging via neural SDEs
Patryk Gierjatowicz
Marc Sabate Vidales
David Siska
Lukasz Szpruch
Zan Zuric
54
34
0
08 Jul 2020
The Signature Kernel is the solution of a Goursat PDE
C. Salvi
Thomas Cass
James Foster
Terry Lyons
Weixin Yang
SyDa
343
58
0
26 Jun 2020
Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering
Calypso Herrera
Florian Krach
Josef Teichmann
BDL
AI4TS
35
32
0
08 Jun 2020
Neural Controlled Differential Equations for Irregular Time Series
Patrick Kidger
James Morrill
James Foster
Terry Lyons
AI4TS
92
472
0
18 May 2020
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Ruizhi Deng
B. Chang
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
42
50
0
24 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
110
184
0
16 Feb 2020
Signatory: differentiable computations of the signature and logsignature transforms, on both CPU and GPU
Patrick Kidger
Terry Lyons
61
84
0
03 Jan 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
401
42,393
0
03 Dec 2019
Analyzing and Improving the Image Quality of StyleGAN
Tero Karras
S. Laine
M. Aittala
Janne Hellsten
J. Lehtinen
Timo Aila
GAN
260
5,808
0
03 Dec 2019
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
100
377
0
06 Jun 2019
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu
Tesi Xiao
Si Si
Qin Cao
Sanjiv Kumar
Cho-Jui Hsieh
67
137
0
05 Jun 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
91
295
0
29 May 2019
ODE
2
^2
2
VAE: Deep generative second order ODEs with Bayesian neural networks
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDL
DRL
61
88
0
27 May 2019
Neural Jump Stochastic Differential Equations
Junteng Jia
Austin R. Benson
BDL
57
225
0
24 May 2019
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
160
209
0
23 May 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
117
330
0
21 May 2019
Deep Signature Transforms
Patrick Kidger
Patrick Kidger
Imanol Perez Arribas
C. Salvi
Terry Lyons
SLR
140
131
0
21 May 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
59
101
0
05 Mar 2019
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
B. Chang
Minmin Chen
E. Haber
Ed H. Chi
PINN
GNN
98
204
0
26 Feb 2019
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
116
623
0
02 Nov 2018
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
378
5,081
0
19 Jun 2018
The Unusual Effectiveness of Averaging in GAN Training
Yasin Yazici
Chuan-Sheng Foo
Stefan Winkler
Kim-Hui Yap
Georgios Piliouras
V. Chandrasekhar
106
175
0
12 Jun 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
112
1,659
0
14 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
155
4,437
0
16 Feb 2018
Searching for Activation Functions
Prajit Ramachandran
Barret Zoph
Quoc V. Le
62
609
0
16 Oct 2017
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang Li
Wei-Cheng Chang
Yu Cheng
Yiming Yang
Barnabás Póczós
GAN
66
722
0
24 May 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
187
9,545
0
31 Mar 2017
Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning
Stefan Elfwing
E. Uchibe
Kenji Doya
126
1,717
0
10 Feb 2017
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
167
4,994
0
27 Jun 2016
Kernels for sequentially ordered data
Franz J. Király
Harald Oberhauser
361
135
0
29 Jan 2016
Generative Moment Matching Networks
Yujia Li
Kevin Swersky
R. Zemel
OOD
GAN
98
847
0
10 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.6K
150,006
0
22 Dec 2014
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
132
6,623
0
22 Dec 2012
1