ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.08644
  4. Cited By
Ab-initio study of interacting fermions at finite temperature with
  neural canonical transformation

Ab-initio study of interacting fermions at finite temperature with neural canonical transformation

18 May 2021
Hao Xie
Linfeng Zhang
Lei Wang
ArXivPDFHTML

Papers citing "Ab-initio study of interacting fermions at finite temperature with neural canonical transformation"

18 / 18 papers shown
Title
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
67
2
0
17 Jan 2025
Exchangeable Neural ODE for Set Modeling
Exchangeable Neural ODE for Set Modeling
Yang Li
Haidong Yi
Christopher M. Bender
Siyuan Shan
Junier B. Oliva
BDL
41
30
0
06 Aug 2020
Phases of two-dimensional spinless lattice fermions with first-quantized
  deep neural-network quantum states
Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states
J. Stokes
Javier Robledo Moreno
E. Pnevmatikakis
Giuseppe Carleo
46
47
0
31 Jul 2020
Equivariant flow-based sampling for lattice gauge theory
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
45
175
0
13 Mar 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
51
89
0
12 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
177
1,687
0
05 Dec 2019
Deep neural network solution of the electronic Schrödinger equation
Deep neural network solution of the electronic Schrödinger equation
J. Hermann
Zeno Schätzle
Frank Noé
202
453
0
16 Sep 2019
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep
  Neural Networks
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
David Pfau
J. Spencer
A. G. Matthews
W. Foulkes
69
459
0
05 Sep 2019
Sliced Score Matching: A Scalable Approach to Density and Score
  Estimation
Sliced Score Matching: A Scalable Approach to Density and Score Estimation
Yang Song
Sahaj Garg
Jiaxin Shi
Stefano Ermon
94
415
0
17 May 2019
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
46
218
0
26 Apr 2019
Augmented Neural ODEs
Augmented Neural ODEs
Emilien Dupont
Arnaud Doucet
Yee Whye Teh
BDL
117
626
0
02 Apr 2019
Solving Statistical Mechanics Using Variational Autoregressive Networks
Solving Statistical Mechanics Using Variational Autoregressive Networks
Dian Wu
Lei Wang
Pan Zhang
61
184
0
27 Sep 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
75
63
0
26 Sep 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
334
5,081
0
19 Jun 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
57
125
0
08 Feb 2018
Unsupervised Generative Modeling Using Matrix Product States
Unsupervised Generative Modeling Using Matrix Product States
Zhaoyu Han
Jun Wang
H. Fan
Lei Wang
Pan Zhang
93
271
0
06 Sep 2017
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
148
2,796
0
20 Feb 2015
Determinantal point processes for machine learning
Determinantal point processes for machine learning
Alex Kulesza
B. Taskar
235
1,134
0
25 Jul 2012
1