ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.05735
  4. Cited By
Autoencoding Under Normalization Constraints
v1v2v3 (latest)

Autoencoding Under Normalization Constraints

12 May 2021
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
    OODDUQCV
ArXiv (abs)PDFHTML

Papers citing "Autoencoding Under Normalization Constraints"

39 / 39 papers shown
Title
Autoencoders for Anomaly Detection are Unreliable
Autoencoders for Anomaly Detection are Unreliable
Roel Bouman
Tom Heskes
73
2
0
23 Jan 2025
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Hiroshi Takahashi
Tomoharu Iwata
Atsutoshi Kumagai
Yuuki Yamanaka
100
1
0
29 May 2024
How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang Song
Diederik P. Kingma
DiffM
72
263
0
09 Jan 2021
Perfect density models cannot guarantee anomaly detection
Perfect density models cannot guarantee anomaly detection
Charline Le Lan
Laurent Dinh
71
50
0
07 Dec 2020
Autoregressive Score Matching
Autoregressive Score Matching
Chenlin Meng
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
DiffM
223
14
0
24 Oct 2020
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based
  Models
VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models
Zhisheng Xiao
Karsten Kreis
Jan Kautz
Arash Vahdat
67
124
0
01 Oct 2020
Improved Techniques for Training Score-Based Generative Models
Improved Techniques for Training Score-Based Generative Models
Yang Song
Stefano Ermon
DiffM
258
1,161
0
16 Jun 2020
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRLAI4CE
90
163
0
31 Mar 2020
Likelihood Regret: An Out-of-Distribution Detection Score For
  Variational Auto-encoder
Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder
Zhisheng Xiao
Qing Yan
Y. Amit
OODD
148
194
0
06 Mar 2020
Latent Variables on Spheres for Autoencoders in High Dimensions
Latent Variables on Spheres for Autoencoders in High Dimensions
Deli Zhao
Jiapeng Zhu
Bo Zhang
DRL
24
10
0
21 Dec 2019
Measuring Compositional Generalization: A Comprehensive Method on
  Realistic Data
Measuring Compositional Generalization: A Comprehensive Method on Realistic Data
Daniel Keysers
Nathanael Scharli
Nathan Scales
Hylke Buisman
Daniel Furrer
...
Tibor Tihon
Dmitry Tsarkov
Tianlin Li
Marc van Zee
Olivier Bousquet
CoGe
68
353
0
20 Dec 2019
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
85
543
0
06 Dec 2019
Input complexity and out-of-distribution detection with likelihood-based
  generative models
Input complexity and out-of-distribution detection with likelihood-based generative models
Joan Serrà
David Álvarez
Vicencc Gómez
Olga Slizovskaia
José F. Núñez
Jordi Luque
OODD
146
276
0
25 Sep 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
192
722
0
07 Jun 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward
  Energy-Based Model
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
89
213
0
22 Apr 2019
Autoregressive Energy Machines
Autoregressive Energy Machines
C. Nash
Conor Durkan
65
55
0
11 Apr 2019
Memorizing Normality to Detect Anomaly: Memory-augmented Deep
  Autoencoder for Unsupervised Anomaly Detection
Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
Dong Gong
Lingqiao Liu
Vuong Le
Budhaditya Saha
M. Mansour
Svetha Venkatesh
Anton Van Den Hengel
UQCV
49
1,265
0
04 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
81
272
0
29 Mar 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,483
0
11 Dec 2018
Do Deep Generative Models Know What They Don't Know?
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
66
757
0
22 Oct 2018
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative
  Models
FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
Ricky T. Q. Chen
J. Bettencourt
Ilya Sutskever
David Duvenaud
DRL
150
873
0
02 Oct 2018
Spherical Latent Spaces for Stable Variational Autoencoders
Spherical Latent Spaces for Stable Variational Autoencoders
Jiacheng Xu
Greg Durrett
BDLDRL
68
195
0
31 Aug 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDLDRL
295
3,134
0
09 Jul 2018
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Generative Probabilistic Novelty Detection with Adversarial Autoencoders
Stanislav Pidhorskyi
Ranya Almohsen
Donald Adjeroh
Gianfranco Doretto
UQCV
45
322
0
06 Jul 2018
Improving Unsupervised Defect Segmentation by Applying Structural
  Similarity to Autoencoders
Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders
Paul Bergmann
Sindy Löwe
Michael Fauser
David Sattlegger
C. Steger
67
668
0
05 Jul 2018
Anomaly Detection for Skin Disease Images Using Variational Autoencoder
Anomaly Detection for Skin Disease Images Using Variational Autoencoder
Yuchen Lu
Peng Xu
DRL
46
73
0
03 Jul 2018
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
GAN
78
1,393
0
17 May 2018
Hyperspherical Variational Auto-Encoders
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRLBDL
109
384
0
03 Apr 2018
Group Normalization
Group Normalization
Yuxin Wu
Kaiming He
231
3,669
0
22 Mar 2018
Spectral Normalization for Generative Adversarial Networks
Spectral Normalization for Generative Adversarial Networks
Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
ODL
157
4,440
0
16 Feb 2018
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
228
5,019
0
02 Nov 2017
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture
  Likelihood and Other Modifications
PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
Tim Salimans
A. Karpathy
Xi Chen
Diederik P. Kingma
105
942
0
19 Jan 2017
Energy-based Generative Adversarial Network
Energy-based Generative Adversarial Network
Jiaqi Zhao
Michaël Mathieu
Yann LeCun
GAN
139
1,114
0
11 Sep 2016
A Theory of Generative ConvNet
A Theory of Generative ConvNet
Jianwen Xie
Yang Lu
Song-Chun Zhu
Ying Nian Wu
DiffMGAN
94
320
0
10 Feb 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSegGAN
479
2,570
0
25 Jan 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.9K
150,115
0
22 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Distributed Representations of Words and Phrases and their
  Compositionality
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAIOCL
397
33,550
0
16 Oct 2013
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OODDRL
70
503
0
18 Nov 2012
1