ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.10201
  4. Cited By
Bayesian Optimization is Superior to Random Search for Machine Learning
  Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020

Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020

20 April 2021
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
    BDL
ArXivPDFHTML

Papers citing "Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020"

26 / 76 papers shown
Title
Autotuning Symbolic Optimization Fabrics for Trajectory Generation
Autotuning Symbolic Optimization Fabrics for Trajectory Generation
Max Spahn
Javier Alonso-Mora
15
2
0
14 Feb 2023
Contextual Causal Bayesian Optimisation
Contextual Causal Bayesian Optimisation
Vahan Arsenyan
Antoine Grosnit
Haitham Bou-Ammar
CML
35
2
0
29 Jan 2023
On the role of Model Uncertainties in Bayesian Optimization
On the role of Model Uncertainties in Bayesian Optimization
Jonathan Foldager
Mikkel Jordahn
Lars Kai Hansen
Michael Riis Andersen
21
4
0
14 Jan 2023
Optimizing Facial Expressions of an Android Robot Effectively: a Bayesian Optimization Approach
Optimizing Facial Expressions of an Android Robot Effectively: a Bayesian Optimization Approach
Dongsheng Yang
Wataru Sato
Qianying Liu
Takashi Minato
Shushi Namba
Shin’ya Nishida
CVBM
36
4
0
13 Jan 2023
Falsification of Cyber-Physical Systems using Bayesian Optimization
Falsification of Cyber-Physical Systems using Bayesian Optimization
Zahra Ramezani
Kenan Sehic
Luigi Nardi
K. Åkesson
37
1
0
14 Sep 2022
Optimizing Demonstrated Robot Manipulation Skills for Temporal Logic
  Constraints
Optimizing Demonstrated Robot Manipulation Skills for Temporal Logic Constraints
Akshay Dhonthi
Philipp Schillinger
Leonel Rozo
Daniele Nardi
38
7
0
07 Sep 2022
Task Selection for AutoML System Evaluation
Task Selection for AutoML System Evaluation
Jon Lorraine
Nihesh Anderson
Chansoo Lee
Quentin de Laroussilhe
Mehadi Hassen
49
4
0
26 Aug 2022
ACHO: Adaptive Conformal Hyperparameter Optimization
ACHO: Adaptive Conformal Hyperparameter Optimization
Riccardo Doyle
TPM
22
0
0
06 Jul 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Towards Learning Universal Hyperparameter Optimizers with Transformers
Towards Learning Universal Hyperparameter Optimizers with Transformers
Yutian Chen
Xingyou Song
Chansoo Lee
Zehao Wang
Qiuyi Zhang
...
Greg Kochanski
Arnaud Doucet
MarcÁurelio Ranzato
Sagi Perel
Nando de Freitas
32
63
0
26 May 2022
ODBO: Bayesian Optimization with Search Space Prescreening for Directed
  Protein Evolution
ODBO: Bayesian Optimization with Search Space Prescreening for Directed Protein Evolution
Lixue Cheng
Ziyi Yang
Chang-Yu Hsieh
Ben Liao
Shengyu Zhang
25
6
0
19 May 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
38
89
0
23 Mar 2022
On Embeddings for Numerical Features in Tabular Deep Learning
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
15
156
0
10 Mar 2022
Sparse Bayesian Optimization
Sparse Bayesian Optimization
Sulin Liu
Qing Feng
David Eriksson
Benjamin Letham
E. Bakshy
30
7
0
03 Mar 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization
  Modules for Neural Architecture Search
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search
Hyunghun Cho
Jungwook Shin
Wonjong Rhee
33
7
0
07 Feb 2022
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Thinking inside the box: A tutorial on grey-box Bayesian optimization
Raul Astudillo
P. Frazier
20
35
0
02 Jan 2022
Triangulation candidates for Bayesian optimization
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
18
13
0
14 Dec 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search
  Spaces
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
Fishr: Invariant Gradient Variances for Out-of-Distribution
  Generalization
Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization
Alexandre Ramé
Corentin Dancette
Matthieu Cord
OOD
40
204
0
07 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
82
448
0
13 Jul 2021
Revisiting Deep Learning Models for Tabular Data
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
48
699
0
22 Jun 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
35
22
0
10 Jun 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
100
17
0
23 Apr 2021
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
Previous
12