ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.10195
  4. Cited By
Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional
  Medical Image Segmentation

Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional Medical Image Segmentation

20 April 2021
Yingda Xia
Dong Yang
Wenqi Li
Andriy Myronenko
Daguang Xu
Hirofumi Obinata
Hitoshi Mori
P. An
Stephanie Harmon
E. Turkbey
Baris Turkbey
Bradford J. Wood
F. Patella
Elvira Stellato
G. Carrafiello
A. Ierardi
Alan Yuille
H. Roth
    OOD
    FedML
ArXivPDFHTML

Papers citing "Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional Medical Image Segmentation"

47 / 47 papers shown
Title
Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning
Yanbiao Ma
Wei-Ming Dai
Wenke Huang
Jiayi Chen
154
0
0
09 Mar 2025
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
106
30,021
0
01 Mar 2022
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
98
189
0
05 Oct 2020
FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning
FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning
Hong-You Chen
Wei-Lun Chao
FedML
37
259
0
04 Sep 2020
Federated Learning for Breast Density Classification: A Real-World
  Implementation
Federated Learning for Breast Density Classification: A Real-World Implementation
H. Roth
Ken Chang
Praveer Singh
N. Neumark
Wenqi Li
...
I. Dayan
R. Naidu
Mona G. Flores
D. Rubin
Jayashree Kalpathy-Cramer
OOD
FedML
AI4CE
20
164
0
03 Sep 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
38
1,314
0
15 Jul 2020
Uncertainty-aware multi-view co-training for semi-supervised medical
  image segmentation and domain adaptation
Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation
Yingda Xia
Ke Wang
Zhiding Yu
Fengze Liu
Jinzheng Cai
Lequan Yu
Zhuotun Zhu
Daguang Xu
Alan Yuille
H. Roth
OOD
31
211
0
28 Jun 2020
DrNAS: Dirichlet Neural Architecture Search
DrNAS: Dirichlet Neural Architecture Search
Xiangning Chen
Ruochen Wang
Minhao Cheng
Xiaocheng Tang
Cho-Jui Hsieh
OOD
28
98
0
18 Jun 2020
Personalized Federated Learning with Moreau Envelopes
Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
FedML
48
982
0
16 Jun 2020
Synthetic Learning: Learn From Distributed Asynchronized Discriminator
  GAN Without Sharing Medical Image Data
Synthetic Learning: Learn From Distributed Asynchronized Discriminator GAN Without Sharing Medical Image Data
Qi Chang
Hui Qu
Yikai Zhang
M. Sabuncu
Chao Chen
Tong Zhang
Dimitris N. Metaxas
MedIm
34
78
0
29 May 2020
Review of Artificial Intelligence Techniques in Imaging Data
  Acquisition, Segmentation and Diagnosis for COVID-19
Review of Artificial Intelligence Techniques in Imaging Data Acquisition, Segmentation and Diagnosis for COVID-19
F. Shi
Jun Wang
Jun Shi
Zi-xiang Wu
Qian Wang
Zhenyu Tang
Kelei He
Yinghuan Shi
Dinggang Shen
67
1,057
0
06 Apr 2020
Adaptive Personalized Federated Learning
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
278
549
0
30 Mar 2020
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
231
1,746
0
18 Mar 2020
Federated Learning with Matched Averaging
Federated Learning with Matched Averaging
Hongyi Wang
Mikhail Yurochkin
Yuekai Sun
Dimitris Papailiopoulos
Y. Khazaeni
FedML
89
1,117
0
15 Feb 2020
MS-Net: Multi-Site Network for Improving Prostate Segmentation with
  Heterogeneous MRI Data
MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data
Quande Liu
Qi Dou
Lequan Yu
Pheng Ann Heng
OOD
92
278
0
09 Feb 2020
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
  Domain Adaptation: ABIDE Results
Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results
Xiaoxiao Li
Yufeng Gu
Nicha Dvornek
Lawrence H. Staib
P. Ventola
James S. Duncan
FedML
OOD
52
353
0
16 Jan 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
98
6,177
0
10 Dec 2019
Domain Generalization via Model-Agnostic Learning of Semantic Features
Domain Generalization via Model-Agnostic Learning of Semantic Features
Qi Dou
Daniel Coelho De Castro
Konstantinos Kamnitsas
Ben Glocker
OOD
90
688
0
29 Oct 2019
FedMD: Heterogenous Federated Learning via Model Distillation
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
70
845
0
08 Oct 2019
Privacy-preserving Federated Brain Tumour Segmentation
Privacy-preserving Federated Brain Tumour Segmentation
Wenqi Li
Fausto Milletarì
Daguang Xu
Nicola Rieke
Jonny Hancox
...
Maximilian Baust
Yan Cheng
Sébastien Ourselin
M. Jorge Cardoso
Andrew Feng
FedML
48
475
0
02 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
174
3,458
0
30 Sep 2019
Federated Learning: Challenges, Methods, and Future Directions
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
83
4,470
0
21 Aug 2019
On the Convergence of FedAvg on Non-IID Data
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
123
2,311
0
04 Jul 2019
Distributed Training with Heterogeneous Data: Bridging Median- and
  Mean-Based Algorithms
Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms
Xiangyi Chen
Tiancong Chen
Haoran Sun
Zhiwei Steven Wu
Mingyi Hong
FedML
33
73
0
04 Jun 2019
Progressive Differentiable Architecture Search: Bridging the Depth Gap
  between Search and Evaluation
Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation
Xin Chen
Lingxi Xie
Jun Wu
Qi Tian
AI4TS
MQ
38
660
0
29 Apr 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
41
1,343
0
07 Mar 2019
A large annotated medical image dataset for the development and
  evaluation of segmentation algorithms
A large annotated medical image dataset for the development and evaluation of segmentation algorithms
Amber L. Simpson
Michela Antonelli
Spyridon Bakas
Michel Bilello
Keyvan Farahani
...
M. McHugo
S. Napel
Eugene Vorontsov
Lena Maier-Hein
M. Jorge Cardoso
71
846
0
25 Feb 2019
Federated Machine Learning: Concept and Applications
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
47
2,297
0
13 Feb 2019
Agnostic Federated Learning
Agnostic Federated Learning
M. Mohri
Gary Sivek
A. Suresh
FedML
76
928
0
01 Feb 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
80
5,105
0
14 Dec 2018
Communication-Efficient On-Device Machine Learning: Federated
  Distillation and Augmentation under Non-IID Private Data
Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data
Eunjeong Jeong
Seungeun Oh
Hyesung Kim
Jihong Park
M. Bennis
Seong-Lyun Kim
FedML
45
596
0
28 Nov 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
149
4,326
0
24 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
119
110
0
05 Jun 2018
Federated Learning with Non-IID Data
Federated Learning with Non-IID Data
Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
FedML
132
2,547
0
02 Jun 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
85
1,764
0
24 May 2018
Implicit Reparameterization Gradients
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
82
231
0
22 May 2018
Regularized Evolution for Image Classifier Architecture Search
Regularized Evolution for Image Classifier Architecture Search
Esteban Real
A. Aggarwal
Yanping Huang
Quoc V. Le
117
3,009
0
05 Feb 2018
Genetic CNN
Genetic CNN
Lingxi Xie
Alan Yuille
3DV
78
836
0
04 Mar 2017
Designing Neural Network Architectures using Reinforcement Learning
Designing Neural Network Architectures using Reinforcement Learning
Bowen Baker
O. Gupta
Nikhil Naik
Ramesh Raskar
77
1,466
0
07 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
372
5,346
0
05 Nov 2016
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV
3DPC
SSeg
3DH
123
6,483
0
21 Jun 2016
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image
  Segmentation
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
Fausto Milletari
Nassir Navab
Seyed-Ahmad Ahmadi
183
8,615
0
15 Jun 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
68
2,000
0
14 Jun 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
223
17,235
0
17 Feb 2016
DeepOrgan: Multi-level Deep Convolutional Networks for Automated
  Pancreas Segmentation
DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation
H. Roth
Le Lu
A. Farag
Hoo-Chang Shin
Jiamin Liu
E. Turkbey
Ronald M. Summers
SSeg
MedIm
45
739
0
22 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
984
76,547
0
18 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
622
149,474
0
22 Dec 2014
1