ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2104.09459
  4. Cited By
A Practical Method for Constructing Equivariant Multilayer Perceptrons
  for Arbitrary Matrix Groups

A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups

19 April 2021
Marc Finzi
Max Welling
A. Wilson
ArXivPDFHTML

Papers citing "A Practical Method for Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups"

50 / 143 papers shown
Title
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
TeleLoRA: Teleporting Model-Specific Alignment Across LLMs
Xiao Lin
Manoj Acharya
Anirban Roy
Susmit Jha
MoMe
75
0
0
26 Mar 2025
PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
Joshua McClellan
Greyson Brothers
Furong Huang
Pratap Tokekar
49
0
0
19 Mar 2025
Permutation Equivariant Neural Networks for Symmetric Tensors
Edward Pearce-Crump
48
0
0
14 Mar 2025
Equivariant Reinforcement Learning Frameworks for Quadrotor Low-Level Control
Equivariant Reinforcement Learning Frameworks for Quadrotor Low-Level Control
Beomyeol Yu
Taeyoung Lee
39
0
0
27 Feb 2025
Geometric Kolmogorov-Arnold Superposition Theorem
Francesco Alesiani
Takashi Maruyama
H. Christiansen
Viktor Zaverkin
57
0
0
23 Feb 2025
Data Augmentation and Regularization for Learning Group Equivariance
Oskar Nordenfors
Axel Flinth
54
0
0
10 Feb 2025
Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Yonatan Sverdlov
Ido Springer
Nadav Dym
32
2
0
09 Oct 2024
Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces
  for Large Finetuned Models
Learning on LoRAs: GL-Equivariant Processing of Low-Rank Weight Spaces for Large Finetuned Models
Theo Putterman
Derek Lim
Yoav Gelberg
Stefanie Jegelka
Haggai Maron
AI4CE
43
5
0
05 Oct 2024
Symmetry From Scratch: Group Equivariance as a Supervised Learning Task
Symmetry From Scratch: Group Equivariance as a Supervised Learning Task
Haozhe Huang
Leo Kaixuan Cheng
Kaiwen Chen
Alán Aspuru-Guzik
30
0
0
05 Oct 2024
Boosting Sample Efficiency and Generalization in Multi-agent
  Reinforcement Learning via Equivariance
Boosting Sample Efficiency and Generalization in Multi-agent Reinforcement Learning via Equivariance
Joshua McClellan
Naveed Haghani
John Winder
Furong Huang
Pratap Tokekar
27
4
0
03 Oct 2024
Segment as You Wish -- Free-Form Language-Based Segmentation for Medical
  Images
Segment as You Wish -- Free-Form Language-Based Segmentation for Medical Images
Longchao Da
Rui Wang
Xiaojian Xu
Parminder Bhatia
Taha A. Kass-Hout
Hua Wei
Cao Xiao
VLM
MedIm
38
2
0
02 Oct 2024
Ensembles provably learn equivariance through data augmentation
Ensembles provably learn equivariance through data augmentation
Oskar Nordenfors
Axel Flinth
MLT
31
3
0
02 Oct 2024
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Ashwin Samudre
Mircea Petrache
Brian D. Nord
Shubhendu Trivedi
44
2
0
18 Sep 2024
EqNIO: Subequivariant Neural Inertial Odometry
EqNIO: Subequivariant Neural Inertial Odometry
Royina Karegoudra Jayanth
Yinshuang Xu
Ziyun Wang
Evangelos Chatzipantazis
Daniel Gehrig
Kostas Daniilidis
40
3
0
12 Aug 2024
Beyond Euclid: An Illustrated Guide to Modern Machine Learning with
  Geometric, Topological, and Algebraic Structures
Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
Sophia Sanborn
Johan Mathe
Mathilde Papillon
Domas Buracas
Hansen Lillemark
Christian Shewmake
Abby Bertics
Xavier Pennec
Nina Miolane
58
4
0
12 Jul 2024
Learning equivariant tensor functions with applications to sparse vector
  recovery
Learning equivariant tensor functions with applications to sparse vector recovery
Wilson Gregory
Josué Tonelli-Cueto
Nicholas F. Marshall
Andrew S. Lee
Soledad Villar
37
1
0
03 Jun 2024
The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof
The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof
Derek Lim
Moe Putterman
Robin Walters
Haggai Maron
Stefanie Jegelka
35
5
0
30 May 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
38
2
0
30 May 2024
Neural Isometries: Taming Transformations for Equivariant ML
Neural Isometries: Taming Transformations for Equivariant ML
Thomas W. Mitchel
Michael Taylor
Vincent Sitzmann
28
0
0
29 May 2024
Approximately-symmetric neural networks for quantum spin liquids
Approximately-symmetric neural networks for quantum spin liquids
Dominik S. Kufel
Jack Kemp
Simon M. Linsel
C. Laumann
Norman Y. Yao
31
3
0
27 May 2024
Symmetry-Informed Governing Equation Discovery
Symmetry-Informed Governing Equation Discovery
Jianke Yang
Wang Rao
Nima Dehmamy
Robin G. Walters
Rose Yu
34
0
0
27 May 2024
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy
  Physics
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics
Jonas Spinner
Victor Bresó
P. D. Haan
Tilman Plehn
Jesse Thaler
Johann Brehmer
AI4CE
29
16
0
23 May 2024
Enhancing lattice kinetic schemes for fluid dynamics with
  Lattice-Equivariant Neural Networks
Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks
Giulio Ortali
Alessandro Gabbana
Imre Atmodimedjo
Alessandro Corbetta
AI4CE
68
1
0
22 May 2024
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random
  Hierarchy Model
How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Umberto M. Tomasini
M. Wyart
BDL
35
7
0
16 Apr 2024
RiEMann: Near Real-Time SE(3)-Equivariant Robot Manipulation without
  Point Cloud Segmentation
RiEMann: Near Real-Time SE(3)-Equivariant Robot Manipulation without Point Cloud Segmentation
Chongkai Gao
Zhengrong Xue
Shuying Deng
Tianhai Liang
Siqi Yang
Lin Shao
Huazhe Xu
3DPC
34
10
0
28 Mar 2024
G-RepsNet: A Fast and General Construction of Equivariant Networks for
  Arbitrary Matrix Groups
G-RepsNet: A Fast and General Construction of Equivariant Networks for Arbitrary Matrix Groups
Sourya Basu
Suhas Lohit
Matthew Brand
34
0
0
23 Feb 2024
Clifford-Steerable Convolutional Neural Networks
Clifford-Steerable Convolutional Neural Networks
Maksim Zhdanov
David Ruhe
Maurice Weiler
Ana Lucic
Johannes Brandstetter
Patrick Forré
47
12
0
22 Feb 2024
Universal Neural Functionals
Universal Neural Functionals
Allan Zhou
Chelsea Finn
James Harrison
27
12
0
07 Feb 2024
Infinite dSprites for Disentangled Continual Learning: Separating Memory
  Edits from Generalization
Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization
Sebastian Dziadzio
cCaugatay Yildiz
Gido M. van de Ven
Tomasz Trzciñski
Tinne Tuytelaars
Matthias Bethge
19
1
0
27 Dec 2023
Self-Supervised Detection of Perfect and Partial Input-Dependent
  Symmetries
Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Alonso Urbano
David W. Romero
24
1
0
19 Dec 2023
Classification of complex local environments in systems of particle
  shapes through shape-symmetry encoded data augmentation
Classification of complex local environments in systems of particle shapes through shape-symmetry encoded data augmentation
Shih-Kuang Lee
Lee
Sun-Ting Tsai
S. Glotzer
14
1
0
19 Dec 2023
Symmetry Breaking and Equivariant Neural Networks
Symmetry Breaking and Equivariant Neural Networks
Sekouba Kaba
Siamak Ravanbakhsh
38
12
0
14 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
53
4
0
07 Dec 2023
Graph Metanetworks for Processing Diverse Neural Architectures
Graph Metanetworks for Processing Diverse Neural Architectures
Derek Lim
Haggai Maron
Marc T. Law
Jonathan Lorraine
James Lucas
AI4CE
31
30
0
07 Dec 2023
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
71
16
0
04 Dec 2023
Steerers: A framework for rotation equivariant keypoint descriptors
Steerers: A framework for rotation equivariant keypoint descriptors
Georg Bökman
Johan Edstedt
Michael Felsberg
Fredrik Kahl
LLMSV
31
10
0
04 Dec 2023
Learning Polynomial Problems with $SL(2,\mathbb{R})$ Equivariance
Learning Polynomial Problems with SL(2,R)SL(2,\mathbb{R})SL(2,R) Equivariance
Hannah Lawrence
Mitchell Tong Harris
22
1
0
04 Dec 2023
Exactly conservative physics-informed neural networks and deep operator
  networks for dynamical systems
Exactly conservative physics-informed neural networks and deep operator networks for dynamical systems
E. Cardoso-Bihlo
Alex Bihlo
AI4CE
PINN
42
4
0
23 Nov 2023
Learning Symmetrization for Equivariance with Orbit Distance
  Minimization
Learning Symmetrization for Equivariance with Orbit Distance Minimization
Tien Dat Nguyen
Jinwoo Kim
Hongseok Yang
Seunghoon Hong
30
3
0
13 Nov 2023
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for
  Equivariant Transformers
Euclidean, Projective, Conformal: Choosing a Geometric Algebra for Equivariant Transformers
P. D. Haan
Taco S. Cohen
Johann Brehmer
28
9
0
08 Nov 2023
Almost Equivariance via Lie Algebra Convolutions
Almost Equivariance via Lie Algebra Convolutions
Daniel McNeela
26
6
0
19 Oct 2023
Lie Group Decompositions for Equivariant Neural Networks
Lie Group Decompositions for Equivariant Neural Networks
Mircea Mironenco
Patrick Forré
AI4CE
23
7
0
17 Oct 2023
Efficient Model-Agnostic Multi-Group Equivariant Networks
Efficient Model-Agnostic Multi-Group Equivariant Networks
Razan Baltaji
Sourya Basu
L. Varshney
32
1
0
14 Oct 2023
Learning Layer-wise Equivariances Automatically using Gradients
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
47
12
0
09 Oct 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie
  Algebras
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
40
1
0
06 Oct 2023
Latent Space Symmetry Discovery
Latent Space Symmetry Discovery
Jianke Yang
Nima Dehmamy
Robin G. Walters
Rose Yu
30
12
0
29 Sep 2023
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural
  Networks
Using Multiple Vector Channels Improves E(n)-Equivariant Graph Neural Networks
Daniel Levy
Sekouba Kaba
Carmelo Gonzales
Santiago Miret
Siamak Ravanbakhsh
38
5
0
06 Sep 2023
CoLA: Exploiting Compositional Structure for Automatic and Efficient
  Numerical Linear Algebra
CoLA: Exploiting Compositional Structure for Automatic and Efficient Numerical Linear Algebra
Andres Potapczynski
Marc Finzi
Geoff Pleiss
Andrew Gordon Wilson
20
7
0
06 Sep 2023
Graph Automorphism Group Equivariant Neural Networks
Graph Automorphism Group Equivariant Neural Networks
Edward Pearce-Crump
William J. Knottenbelt
21
1
0
15 Jul 2023
123
Next